
Copyright

by

Alexander Alexandrovich Sherstov

2009

Rectangle



The Dissertation Committee for Alexander Alexandrovich Sherstov
certifies that this is the approved version of the following dissertation:

Lower Bounds in Communication Complexity and

Learning Theory via Analytic Methods

Committee:

Adam R. Klivans, Supervisor

Anna Gál

C. Gregory Plaxton

Alexander A. Razborov

David Zuckerman



Lower Bounds in Communication Complexity and

Learning Theory via Analytic Methods

by

Alexander Alexandrovich Sherstov, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2009

Rectangle

Rectangle



In loving memory of my grandmother, Lyubov Panteleyevna Shilova (1923–2004).



Acknowledgments

I am deeply indebted to my adviser Adam Klivans for his fundamental role in my
doctoral work. Adam provided me with every bit of guidance, assistance, and ex-
pertise that I needed during my first few semesters; then, when I felt ready to venture
into research on my own and branch out into new research areas, Adam gave me the
freedom to do whatever I wanted, at the same time continuing to contribute valuable
feedback, advice, and encouragement. In addition to our academic collaboration, I
greatly value the close personal rapport that Adam and I have forged over the years.
I quite simply cannot imagine a better adviser.

I would like to thank the theory faculty at the University of Texas at Austin,
especially Anna Gál, Adam Klivans, and David Zuckerman, for the substantial in-
fluence that their courses have had on my research. I gratefully acknowledge the
members of my Ph.D. committee for their time and valuable feedback on a pre-
liminary version of this thesis. I would particularly like to acknowledge Alexander
Razborov, who has long been an inspiring figure for me. Among many other things,
I am thankful to Sasha for inviting me to the Institute for Advanced Study in the fall
of 2007 and our fruitful collaboration there.

I am very thankful to Matthew Fike, my English professor at the American
University in Bulgaria in 1999 and a good friend ever since, for all his help, ad-
vice, and encouragement. The computer science faculty at Hope College, my alma
mater, also played a crucial role in my academic career. I am particularly thankful
to Herb Dershem and Ryan McFall for being the outstanding educators that they
are and for all their encouragement and support during my time at Hope and later
on. I feel extremely privileged to have been their student. I am very thankful to the
professors of French at Hope College and the University of Texas at Austin, partic-
ularly Brigitte Hamon-Porter, Anne Larsen, Carl Blyth, Robert Dawson (who sadly
passed in June 2007), Thomas Vessely, as well as teaching assistant Julie Ouvrard
and my tutor and close friend Emilie Destruel, for helping me realize my dream of
mastering French and for teaching me so much about France and French culture. Je
ne vous en remercierai jamais assez.

v



I owe a great debt of gratitude to my teachers at High School No. 1 in my
hometown Karaganda, Kazakhstan. These men and women provided their students
with a world-class high school education in mathematics, physics, biology, chem-
istry, and other subjects without being paid a salary for months on end, amid the
disastrous economic conditions and political turmoil that resulted from the dissolu-
tion of the Soviet Union. I am particularly thankful to my mathematics teacher and
mentor Vera Petrovna Onishchenko, whose pedagogical talent is greatly responsi-
ble for my love of mathematics. As time goes on, I realize more and more clearly
the huge impact that she has had on my academic career.

I would like to thank my friends in the computer science department at
Austin for all the great times that we have shared. I am particularly thankful to
Mazda Ahmadi, a racquetball partner and a good friend, for his infinite patience
with my command of the racquet and reaction speed.

I am deeply thankful to my family for their love, support, and sacrifices.
Without them, this thesis would never have been written. I dedicate this thesis to
the memory of my grandmother Lyubov Panteleyevna Shilova, whose role in my
life was, and remains, immense. This last word of acknowledgment I have saved
for my dear wife Lily Mihalkova, who has been with me all these years and has
made them the best years of my life.

Alexander A. Sherstov

Austin, Texas
August 2009

vi



Lower Bounds in Communication Complexity and

Learning Theory via Analytic Methods

Publication No.

Alexander Alexandrovich Sherstov, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Adam R. Klivans

A central goal of theoretical computer science is to characterize the limits
of efficient computation in a variety of models. We pursue this research objective
in the contexts of communication complexity and computational learning theory.
In the former case, one seeks to understand which distributed computations require
a significant amount of communication among the parties involved. In the latter
case, one aims to rigorously explain why computers cannot master some prediction
tasks or learn from past experience. While communication and learning may seem
to have little in common, they turn out to be closely related, and much insight into
both can be gained by studying them jointly. Such is the approach pursued in this
thesis. We answer several fundamental questions in communication complexity and
learning theory and in so doing discover new relations between the two topics. A
consistent theme in our work is the use of analytic methods to solve the problems at
hand, such as approximation theory, Fourier analysis, matrix analysis, and duality.

� We contribute a novel technique, the pattern matrix method, for proving lower
bounds on communication. Using our method, we solve an open problem due
to Krause and Pudlák (1997) on the comparative power of two well-studied
circuit classes: majority circuits and constant-depth AND/OR/NOT circuits.
Next, we prove that the pattern matrix method applies not only to classical
communication but also to the more powerful quantum model. In particu-
lar, we contribute lower bounds for a new class of quantum communication
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problems, broadly subsuming the celebrated work by Razborov (2002) who
used different techniques. In addition, our method has enabled considerable
progress by a number of researchers in the area of multiparty communication.

� Second, we study unbounded-error communication, a natural model with ap-
plications to matrix analysis, circuit complexity, and learning. We obtain
essentially optimal lower bounds for all symmetric functions, giving the first
strong results for unbounded-error communication in years. Next, we resolve
a longstanding open problem due to Babai, Frankl, and Simon (1986) on
the comparative power of unbounded-error communication and alternation,
showing that †cc

2 › UPPcc: The latter result also yields an unconditional,
exponential lower bound for learning DNF formulas by a large class of al-
gorithms, which explains why this central problem in computational learning
theory remains open after more than 20 years of research.

� We establish the computational intractability of learning intersections of
halfspaces, a major unresolved challenge in computational learning theory.
Specifically, we obtain the first exponential, near-optimal lower bounds for
the learning complexity of this problem in Kearns’ statistical query model,
Valiant’s PAC model (under standard cryptographic assumptions), and vari-
ous analytic models. We also prove that the intersection of even two half-
spaces on f0; 1gn cannot be sign-represented by a polynomial of degree less
than �.

p
n/; which is an exponential improvement on previous lower bounds

and solves an open problem due to Klivans (2002).

� We fully determine the relations and gaps among three key complexity mea-
sures of a communication problem: product discrepancy, sign-rank, and dis-
crepancy. As an application, we solve an open problem due to Kushilevitz and
Nisan (1997) on distributional complexity under product versus nonproduct
distributions, as well as separate the communication classes PPcc and UPPcc

due to Babai, Frankl, and Simon (1986). We give interpretations of our results
in purely learning-theoretic terms.
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A broad goal of theoretical computer science is to characterize the limits
of efficient computation in a variety of models. We pursue this research objective
in the contexts of communication and learning. In the former case, one seeks to
understand which distributed computations require a significant amount of com-
munication among the parties involved. In the latter case, one aims to rigorously
explain why computers cannot master some prediction tasks or learn from past ex-
perience. The complexity of communication and the complexity of learning are
vibrant areas of theoretical computer science, studied for their intrinsic appeal as
well as applications to other areas. While communication and learning may seem
to have little in common, they turn out to be closely related, and much insight into
both can be gained by studying them jointly. Such is the approach pursued in this
thesis. Our work is based on the fact that communication and learning naturally
lend themselves to the methods of mathematical analysis, such as approximation
theory, matrix analysis, linear programming duality, and Fourier analysis. We use
these analytic methods to answer several fundamental questions in communication
complexity and learning theory, and in so doing discover new relations between the
two topics. Before we go into further details, we need to describe the subject of our
study somewhat more formally.

1.1 Communication complexity
Communication complexity theory, initiated in a seminal 1979 paper by Yao [223],
studies of the amount of information exchange necessary in order to compute a
given Boolean function when its arguments are distributed among several parties.
More precisely, consider a Boolean function f WX � Y ! f�1;C1g for some
finite sets X and Y: The canonical model features two parties, traditionally called
Alice and Bob. Alice receives an argument x 2 X; her counterpart Bob receives
an argument y 2 Y; and their objective is to determine the value f .x; y/: To this
end, Alice and Bob can exchange binary messages, i.e., strings of 0 and 1; via a
shared communication channel according to an agreed-upon protocol. For a given
function f; the main research question is to determine whether a protocol exists
that will allow Alice and Bob to evaluate f .x; y/ correctly for any x and y while
exchanging only a small number of bits.
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To illustrate, consider the disjointness problem, where Alice and Bob each
receive a subset of f1; 2; : : : ; ng and need to determine if these subsets intersect. A
trivial solution would be for Alice to send her entire set to Bob, using the canoni-
cal n-bit encoding. This trivial protocol turns out to be essentially optimal [137]:
one can prove a lower bound of ˝.n/ bits on the communication required. This
lower bound remains valid [102, 176] even if Alice and Bob simply want to predict
the correct answer with probability 51%: On the other hand, consider the equal-
ity problem, in which Alice and Bob receive strings x 2 f0; 1gn and y 2 f0; 1gn;

respectively, and need to determine whether x D y: While an exact solution still
requires ˝.n/ bits of communication, it may surprise the reader that the parties can
solve this problem with correctness probability 99% by exchanging only a constant
number of bits [137].

Over the past thirty years, communication complexity has evolved into a
challenging and active research area. First of all, it provides a natural model in
which to study the limits of efficient computation. Furthermore, communication
complexity turns out to be essential for understanding a host of other computational
models. To illustrate how communication complexity sheds light on seemingly un-
related questions, consider the problem of laying out a computer chip. A typical
such chip, shown schematically in Figure 1.1, features n Boolean inputs x1; : : : ; xn

that feed into a circuit of wires and gates. The chip computes a certain function
f W f0; 1gn ! f0; 1g of the inputs, with the output appearing at the output port.
The chip operates in cycles, each corresponding to signals propagating through one
Boolean gate. The designer’s challenge is to lay out the chip so as to minimize the
number of compute cycles as well as the area of the chip. In a classic paper, Thomp-
son [212] recasts this task as a communication problem induced by f and derives
a lower bound on the chip area and compute time in terms of the communication
complexity of f:

As another well-studied application, consider the design of streaming algo-
rithms. In this setting, a stream of data is arriving so abundant that it is impracti-
cal to store it all in memory. Such situations arise frequently in network analysis,
database management, and other large-scale computational tasks. In such cases one
scans the data stream one item at a time, retaining only a small amount of infor-
mation about the previously viewed items. In an influential paper, Alon, Matias,
and Szegedy [14] modeled a streaming algorithm as a communication protocol and
showed that several natural streaming problems require large amounts of memory.

3



x1

x2

xnx3

output

Figure 1.1: A chip layout problem.

Chip layout and streaming algorithms are just the tip of the iceberg as far as
the uses of communication complexity are concerned. Communication complexity
plays a vital role in theoretical computer science, with applications to circuit com-
plexity, Turing machines, branching programs, data structures, derandomization,
private information retrieval, communication networks, matrix analysis, and learn-
ing theory. To accommodate this array of applications, various models of com-
munication are in use. Many of these models are treated in this thesis, including
randomized communication, quantum communication, multiparty communication,
small-bias communication, and unbounded-error communication.

1.2 Computational learning theory
As computing technology is put to use in more and more areas of human activity,
there is an increasing need for algorithms that automatically improve their perfor-
mance over time, or learn from past experience. Computational tasks that would
benefit from this kind of learning include estimating the credit-worthiness of a loan
applicant based on historical data, classifying satellite images based on previously
labeled examples, and predicting stock market performance based on past trends.
Computational learning theory is an area of theoretical computer science that seeks
to design efficient and provably correct algorithms for natural learning tasks and to
rigorously establish why some other learning tasks are inherently intractable.

A central computational abstraction of learning is the probably approx-
imately correct model due to Valiant [213], commonly abbreviated PAC. This

4



 (00101011,  +1)
 (10111111,   –1)
 (01001001,   +1)
        . . .            
  (10100101,   –1)

hypothesis
h(x)

learner

Figure 1.2: A computational view of learning.

framework, illustrated in Figure 1.2, models a learning task as a family C of
Boolean functions f WX ! f�1;C1g on a given set X; with the typical case being
X D f0; 1gn: The functions in C are called concepts and the family C is called the
concept class. Fix a probability distribution µ on X and choose function f 2 C ;

both unknown to the learner. The learner receives the evaluations of f on a small
set of points x.1/; : : : ; x.m/ 2 X; each drawn independently according to µ: Based
on this training data alone and the fact that f 2 C ; the learner’s challenge is to
produce a hypothesis hWX ! f�1;C1g that agrees with the unknown function al-
most perfectly, in the sense that PµŒf .x/ D h.x/� > 0:99: Given a concept class
C ; the main research question is to design a computationally efficient PAC learning
algorithm for C or to give a rigorous argument for the problem’s computational
intractability. Apart from the PAC model, several other learning models are con-
sidered in this thesis and earlier literature, distinguished by the kind of information
that learner receives about the unknown function.

To illustrate these definitions, consider the concept class of polynomial-
size formulas in disjunctive normal form (DNF), commonly called DNF formu-
las for short. These are functions f W f0; 1gn ! f�1;C1g expressible in the form
f .x1; : : : ; xn/ D

Wm
iD1 Ti.x1; : : : ; xn/; where m < nc for some positive constant c

and each Ti is a conjunction of the literals x1; : : : ; xn or their negations. Learning
DNF formulas efficiently amounts to giving a polynomial-time algorithm that takes
as input a random sample of strings from f0; 1gn; each labeled according to the un-
known function f; and produces an accurate approximation hW f0; 1gn ! f�1;C1g

to f: Note that the hypothesis h itself can be any polynomial-time computable func-
tion and not necessarily a DNF formula. The challenge of learning DNF formulas in

5



polynomial time, posed in Valiant’s seminal 1984 paper on computational learning
theory [213], remains unresolved to this day.

The study of computational learning is motivated on the one hand by prac-
tical applications such as computer vision, data mining, electronic commerce, and
networking, and on the other hand by the connections between learning and other
areas of theoretical computer science such as circuit complexity and cryptography.
In particular, the work in this thesis exploits the close relationship between learning
and communication complexity. As described above, a learning problem is given
by a family C of functions X ! f�1;C1g; which has the following convenient
representation in matrix form:

x 2 X

A D

26666666664

..
..

..
..

.

. . . . . . . . . . . . . . . .f .x/ . . . . . . . . . . . . . . . .

..
..

..
..

.
37777777775

f 2 C

Similarly, a communication problem is given by a function f WX � Y ! f�1;C1g

for some finite sets X and Y and has the representation

x 2 X

B D

26666666664

..
..

..
..

.

. . . . . . . . . . . . . . . .f .x; y/ . . . . . . . . . . . . . . . .

..
..

..
..

.

37777777775
y 2 Y

The matrices A and B above, one arising in learning theory and the other in commu-
nication complexity, are distinguished exclusively by the row and column indices.
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Analytically speaking, A and B are the same object: a sign matrix. In this light, our
approach is to focus on the main mathematical object, the sign matrix, without un-
due concern for its origin (learning or communication). This approach allows us to
discover novel techniques for studying sign matrices, use them to solve challenging
open problems in learning and communication, and reveal new relations between
the two areas.

1.3 A historical overview
Problems in computational complexity frequently admit formulations in terms of
multivariate real polynomials, rational functions, or matrices. This is particularly
true of the work in this thesis, and a recurring theme in our research is the use of
analytic methods such as approximation theory, Fourier analysis, matrix analysis,
and linear programming duality. Analytic methods have a long history of use in
computational complexity. We now pause to survey this literature, focusing on
analytic work in communication complexity and learning theory.

Approximation theory

Modern approximation theory is an active area of mathematical analysis that origi-
nated in the mid-nineteenth century. The monograph by Cheney [60] offers a thor-
ough treatment of the fundamentals of approximation theory, with a shorter and
gentler introduction available due to Rivlin [185]. In computational complexity,
one typically considers a Boolean function f W f0; 1gn ! f�1;C1g and studies the
least degree of a real polynomial that approximates f pointwise within a given er-
ror ε: More formally, for 0 < ε < 1 one studies the ε-approximate degree of f;

denoted degε.f / and defined as the least degree of a polynomial p such that

max
x2f0;1gn

jf .x/ � p.x/j 6 ε:

There is an extensive literature on the ε-approximate degree of Boolean func-
tions [160, 165, 100, 52, 4, 15, 221], both for the canonical setting ε D 1=3 and
various other settings. An important limiting case of the approximate degree is the
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quantity

deg˙.f / D lim
ε%1

degε.f /;

called the threshold degree of f: A moment’s reflection reveals that the threshold
degree is the least degree of a polynomial p that represents f in sign: f .x/ �

sgn p.x/: The threshold degree, too, has been extensively studied by complexity
theorists [153, 21, 132, 133, 122, 121, 163].

Uniform approximation and sign-representation of Boolean functions have
found various applications in the literature, both on the algorithmic front and on
the complexity-theoretic front. To start with, the fastest known algorithms for PAC
learning DNF formulas [122] and intersections of halfspaces [121] crucially exploit
the fact that these concept classes admit efficient sign-representations by polyno-
mials. Representation of Boolean functions by real polynomials have been used to
prove lower bounds on various types of Boolean and threshold circuits and to relate
computational complexity classes [33, 166, 210, 21, 132, 218, 133]. Remarkable
relationships have been discovered [158, 160, 28] between the above analytic rep-
resentations of Boolean functions and the more traditional, combinatorial models
such as decision trees. In more recent literature, approximation theory has also been
applied to prove communication lower bounds [177]. For detailed background on
complexity-theoretic applications of polynomial approximation, we refer the reader
to the excellent surveys in [55, 31, 190].

In addition to real polynomials, there is a considerable literature on repre-
sentations of Boolean functions by polynomials with integer coefficients, or percep-
trons as they are sometimes called [153, 155, 32, 92, 218, 124, 169, 170]. Finally, it
is natural to study approximation by rational functions. This subject in approxima-
tion theory dates back to the classical work by Zolotarev [228] and Newman [156]
and has seen much research, as surveyed in [168]. In particular, rational functions
have found various applications in computational complexity [33, 166, 210, 121, 1]
and play an important role in the concluding chapters of this thesis.
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Fourier analysis

A counterpart to uniform approximation on the Boolean hypercube is Fourier anal-
ysis, which is motivated by least-squares approximation. Consider a Boolean func-
tion f W f�1;C1gn ! f�1;C1g: By elementary linear algebra, f admits a unique
representation of the form

f .x/ D
X

S�f1;2;:::;ng

Of .S/
Y
i2S

xi ;

for some reals Of .S/ called the Fourier coefficients of f: A straightforward yet pow-
erful observation, known as Parseval’s identity, is that

X
S�f1;2;:::;ng

Of .S/2
D 1:

In this light, it is meaningful to ask how the “Fourier mass” is distributed among
the 2n Fourier coefficients. Of particular interest is the case when the high-order
Fourier coefficients are negligible in magnitude, i.e., when

P
jS j>k

Of .S/2 < ε for
some small ε and k � n: In this case, the Fourier mass of f is concentrated on
the low-order Fourier coefficients, and one can show that the truncated, low-degree
expression

X
S�f1;2;:::;ng; jS j6k

Of .S/
Y
i2S

xi

is an accurate least-squares approximation to f:

Concentration results for the Fourier spectrum and other Fourier-based tech-
niques have been used to design learning algorithms with respect to the uniform dis-
tribution for a variety of concept classes [141, 136, 150, 98, 121, 154, 49], including
decision trees, DNF formulas, constant-depth circuits, intersections of halfspaces,
and juntas. In computational complexity, the Fourier spectrum has been used to ob-
tain communication lower bounds [171, 114] and to study various types of threshold

9



circuits [44, 207, 45, 92]. Other prominent uses of Fourier analysis in complexity
theory include probabilistically checkable proofs and social choice theory, as sur-
veyed in [66, 162].

Matrix analysis

Problems in communication complexity and learning theory have representations in
the form of sign matrices, as described earlier in Section 1.2. Such representations
allow for a fruitful use of matrix analysis. The singular values, for example, provide
a wealth of information about a given matrix, including its rank, spectral norm, trace
norm, and various other properties. Typically, it is necessary to study the spectral
properties not only for a given sign matrix A but also for all real matrices in its
ε-neighborhood: fB W kA � Bk∞ < εg:

Among the first uses of matrix analysis in communication complexity is the
influential paper of Mehlhorn and Schmidt [152], who showed that the rank of a
communication matrix implies a lower bound on its deterministic communication
complexity. The longstanding log-rank conjecture, due to Lovász and Saks [147],
is also matrix-analytic in nature: it states that the logarithm of the rank of a sign
matrix characterizes its deterministic communication complexity up to a polyno-
mial. It is well-known [130, 226, 134, 54, 177] that the communication complexity
of a sign matrix A in several classical and quantum models can be bounded from
below by the minimum rank or minimum trace norm of the real matrices in the
ε-neighborhood of A: The breakthrough lower bound, due to Forster [70], for the
unbounded-error model of communication crucially uses matrix analysis and com-
pactness arguments. Matrix-analytic methods have also been used to study thresh-
old circuits [130, 71] and matrix rigidity [146, 103, 73]. In computational learning
theory, matrix analysis has been used in the context of learning via Euclidean em-
beddings and statistical queries [70, 72, 222, 206, 73].

Linear programming duality

Linear programming duality is an analytic tool with applications in areas as diverse
as game theory, economics, algorithm design, and complexity theory. The duality
of linear programming admits several equivalent formulations. One such, known as
Farkas’ Lemma [194], states that the system of linear inequalities Ax 6 b; where A
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is a real matrix and b a vector, has a solution x > 0 if and only if there does not exist
a vector y > 0 such that yTA > 0 and yTb < b: The crux is that every infeasible
system Ax 6 b; x > 0 has a corresponding vector y that witnesses the system’s
infeasibility. In computational complexity, this witness is an object of great interest
in its own right because it can be used to construct a new witness, exhibiting the
infeasibility of another system.

Let us consider an illustrative use of duality, due to O’Donnell and Serve-
dio [163]. Recall that the threshold degree of a Boolean function f W f0; 1gn !

f�1;C1g; denoted deg˙.f /; is the least degree of a real polynomial p with
f .x/ � sgn p.x/: Fix two Boolean functions f; gW f0; 1gn ! f�1;C1g and let
f ˚ g denote their product: .f ˚ g/.x; y/ D f .x/g.x/: Then f ˚ g is a Boolean
function itself, and it is meaningful to speak of its threshold degree. Observe that

deg˙.f ˚ g/ 6 deg˙.f /C deg˙.g/;

since given any polynomials p; q with f .x/ � sgn p.x/ and g.x/ � q.x/; we have
.f ˚g/.x; y/ � sgnfp.x/q.y/g: Is this simple upper bound tight? It turns out that
it is, and the proof is an elegant application of linear programming duality [163].
In more detail, the fact that f and g have threshold degree at least deg˙.f / and
deg˙.g/; respectively, can be certified by a certain witness in each case. The exis-
tence of these two witnesses is assured by Farkas’ Lemma. Combining them yields
the sought witness that deg˙.f ˚ g/ > deg˙.f /C deg˙.g/:

Apart from the above example, a well-known application of duality in the
complexity literature is due to Linial and Nisan [143], who studied the problem of
approximating the probability of a union of events A1 [ � � � [ An by the probabili-
ties of the intersections

T
i2S Ai for small sets S: Tarui and Tsukiji [211] used this

duality-based result to give an improved algorithm for learning DNF formulas. In
communication complexity, Yao [224] used the famous minimax theorem for zero-
sum games to relate randomized and deterministic communication. Kushilevitz and
Nisan [137] used duality to study a different complexity measure of a communica-
tion problem. More recently, Linial and Shraibman [145] used linear programming
duality to prove the equivalence of the discrepancy of a communication problem
and a learning-theoretic notion, margin complexity. Linear programming duality is
an essential tool in many chapters of this thesis.
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1.4 Our contributions
We will describe the contributions of this thesis on a topic-by-topic basis, focus-
ing first on communication complexity, then on computational learning theory, and
finally on interdisciplinary results that span both areas.

The pattern matrix method

Recall that in communication complexity, one seeks to prove a lower bound on
the amount of communication needed to compute a given Boolean function in a
given model. This thesis contributes a novel technique for communication lower
bounds, the pattern matrix method. Our technique takes any given Boolean function
f W f0; 1gn ! f�1;C1g and creates from it a natural two-party communication
problem F.x; y/: The crux is that the communication complexity of F.x; y/ can
be conveniently determined from standard analytic properties of f: To illustrate,
if f cannot be approximated pointwise within 1=3 by a real polynomial of low
degree, then F.x; y/ will have high communication complexity in the randomized
model. If, in addition, f cannot even be represented in sign by a low-degree real
polynomial, then the resulting communication problem F.x; y/ will have high cost
in almost all models, including computation with an exponentially small advantage
over random guessing. Recall that real polynomials are among the most extensively
studied objects in theoretical computer science, with the literature dating as far back
as 1961. In other words, the pattern matrix method takes several decades’ worth of
work on representations of Boolean functions by real polynomials and puts them at
the disposal of communication complexity. The key to our method is to discover
a way to exploit the dual formulation of uniform approximation, an approach that
departs entirely from previous work [54, 114, 177]. Other essential ingredients of
the pattern matrix method are Fourier analysis and spectral techniques.

We demonstrate the power of the pattern matrix method by solving several
problems in the area. First, we solve an open problem posed in 1997 by Krause
and Pudlák [132] on the comparative power of two well-studied circuit classes:
constant-depth AND/OR/NOT circuits and majority circuits. Specifically, we prove
that constant-depth AND/OR/NOT circuits cannot be simulated by depth-2 major-
ity circuits of subexponential size. This result is best possible since an efficient
simulation always exists by depth-3 majority circuits [11].
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Second, we prove that the pattern matrix method applies not only to classi-
cal communication but also to the more challenging quantum model. In particular,
we contribute lower bounds for a new class of quantum communication problems,
broadly subsuming the celebrated work by Razborov [177] on the disjointness func-
tion and other symmetric problems. Our techniques are completely different from
Razborov’s. As another application, we exhibit a large new class of communication
problems for which quantum protocols are essentially no better than their classical
counterparts, subsuming a previous such class due to Razborov [177]. Understand-
ing the comparative power of quantum and classical communication is a fundamen-
tal goal in the area.

We are pleased to report that the pattern matrix method has also enabled
important progress by a number of researchers in the area of multiparty communi-
cation. Lee and Shraibman [140] and Chattopadhyay and Ada [59] observed that
our method readily generalizes to three and more players, thereby obtaining much
improved lower bounds on the communication complexity of the disjointness func-
tion. David and Pitassi [64] combined these techniques with an ingenious use of the
probabilistic method, thereby separating the multiparty classes NPcc and BPPcc:

Their probabilistic construction was made explicit in a follow-up paper by David,
Pitassi, and Viola [65]. Continuing this line of work is a recent paper by Beame
and Huynh-Ngoc [29], who give much improved multiparty communication lower
bounds for constant-depth circuits. In joint work with D. Gavinsky, we contribute
to this growing body of work a proof that NPcc

¤ coNPcc in multiparty communi-
cation, and other separations [81].

Unbounded-error communication and sign-rank

The unbounded-error model is the most powerful of the primary models of com-
munication, with applications to learning theory, threshold circuit complexity, and
matrix analysis. The unbounded-error communication complexity of a Boolean ma-
trix A 2 f�1;C1gm�n is precisely determined the sign-rank of A; or equivalently
the least rank of a real matrix R with Aij D sgn Rij for all i; j: We contribute es-
sentially optimal lower bounds for every symmetric Boolean function in this model.
These are the first strong results for unbounded-error communication in years, since
Forster’s breakthrough lower bounds for Hadamard matrices and their generaliza-
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tions [70]. Our proof uses approximation theory, Fourier analysis, and random
walks, in addition to the pattern matrix method.

In a follow-up result on the topic, proved jointly by A. A. Razborov and
the author, we solve a longstanding open problem posed by Babai, Frankl, and Si-
mon [23]. This problem asks whether unbounded-error communication protocols
are more powerful than the polynomial hierarchy PHcc; another model which cor-
responds to communication with a bounded number of 9 and 8 quantifiers. We
give the strongest negative answer to this question, showing that even the func-
tion f .x; y/ D

Vn
iD1

Wn
j D1.xij ^ yij /; which corresponds to two quantifiers, does

not have an efficient unbounded-error protocol. At the heart of our proof is a new
method for analyzing multivariate polynomials p on Rn; which works by projecting
p in several ways to a univariate polynomial, analyzing these simpler objects using
approximation theory, and recombining the results using Fourier-theoretic tools.

Our joint work with A. A. Razborov additionally shows that polynomial-
size DNF formulas have exponentially high sign-rank. Put differently, we give
an unconditional, exponential lower bound for learning DNF formulas by a large
class of algorithms, which helps explain why this central problem in learning theory
remains unsolved after more than 20 years of research [214, 106, 17, 18, 217, 19,
7, 89, 136, 6, 8, 39, 150, 46, 90, 138, 5, 189, 48, 47, 211, 122].

Learning intersections of halfspaces

A major unresolved challenge in computational learning theory is learning inter-
sections of halfspaces, i.e., intersections of Boolean functions of the form f .x/ D

sgn.
P

aixi �θ/ for some fixed reals a1; : : : ; an;θ: While efficient algorithms have
long been known for learning a single halfspace, no polynomial-time algorithm has
been found for learning the intersection of even two halfspaces. In joint work with
A. R. Klivans, we account for this lack of progress by establishing the first expo-
nential, near-optimal lower bounds for learning the intersection of nε halfspaces in
Kearns’ statistical-query model [104]. We obtain an analogous result for the PAC
model, showing that an efficient learning algorithm for the intersection of nε half-
spaces would violate standard cryptographic assumptions. Our techniques center
around perceptrons and Fourier analysis.
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These two results leave open the possibility of efficiently learning the in-
tersection of k halfspaces for k small, such as a constant. The author addresses
this challenge in the concluding part of the thesis. Specifically, we construct two
halfspaces on f0; 1gn whose intersection cannot be sign-represented by a polyno-
mial of degree less than �.

p
n/: This lower bound is an exponential improvement

on previous work. It solves an open problem due to Klivans [120] and rules out
the use of perceptron-based algorithms for learning the intersection of even two
halfspaces. Our techniques feature novel applications of linear programming dual-
ity, lower bounds for rational functions, and other analytic work. In particular, we
contribute new techniques for studying compositions F.f1; : : : ; fk/ in terms of the
analytic properties of the constituent functions F; f1; : : : ; fk:

In summary, our study of intersections of halfspaces paints a rather com-
plete picture of the problem’s intractability, including representation-independent
cryptographic hardness results as well as various model-specific, exponential lower
bounds.

Relations and separations in communication and learning

By treating communication problems abstractly as sign matrices, we are able to
relate the computational power of several other models of communication. One
open problem that we solve, due to Kushilevitz and Nisan [137], is as follows.
When proving a lower bound on the communication requirements of a Boolean
function f .x; y/; one must typically find a probability distribution µ with respect
to which f is hard to compute. In practice, it is far easier to analyze product
distributions, whereby the two arguments to the function f .x; y/ are distributed
independently. Kushilevitz and Nisan asked in 1997 whether the exclusive use of
product distributions can severely affect the quality of the solution. We answer this
question, exhibiting a gap of �.1/ versus �.n/ for the product and nonproduct
communication complexity of a certain function f W f0; 1gn � f0; 1gn ! f�1;C1g:

Only a quadratic separation between the two quantities was known prior to our
work [23].

Next, we study three complexity measures of a communication problem:
product discrepancy, sign-rank, and discrepancy. Remarkably, all three play a key
role in learning theory [145, 198] and are known in the learning literature as sta-
tistical query dimension, dimension complexity, and margin complexity. All that
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was known prior to our work is that the margin complexity gives an upper bound
on the dimension complexity [35]. We completely determine all the other relations
and gaps among the three quantities. As an application to communication com-
plexity, we separate the communication classes PPcc and UPPcc; whose equality
or inequality was open since their introduction in 1986 by Babai, Frankl, and Si-
mon [23]. These two classes were separated independently and at the same time
by Buhrman, Vereshchagin, and de Wolf [53], using quite different techniques. As
an application of our work to learning theory, we prove a near-tight upper bound of
2.nC 1/2 on the statistical query dimension of halfspaces, considerably improving
on the earlier estimate of nO.1/ from the influential 1994 paper of Blum et al. [37].

1.5 Organization of this thesis
This thesis is organized in two parts. Part I focuses on communication complex-
ity and consists of Chapters 3–11. Part II studies computational learning theory
and consists of Chapters 12–17. Preceding both parts of the thesis is a chapter on
general analytic and combinatorial background. In what follows, we give a more
detailed account of the organization on a chapter-by-chapter basis. We will later
complement this overview with a chart of chapter dependencies.

Chapter 2 sets the stage for the technical development to follow with nota-
tion, conventions, and required analytic background. In particular, we review key
analytic properties of Boolean functions and matrices, which play a central role
throughout this thesis. Also covered here are combinatorial complexity measures
of Boolean functions, which turn out to be closely related to their analytic counter-
parts. To best organize the various definitions and notations, we conclude Chapter 2
with a table of technical symbols and their meanings. A comprehensive such table,
including symbols introduced in later chapters, is provided in Appendix A for the
reader’s convenience.

Chapter 3 marks the beginning of Part I of this thesis on communication
complexity. We introduce the canonical framework of two-party communication
and the deterministic, randomized, and nondeterministic models. More advanced
formalisms, such as the quantum, unbounded-error, and multiparty models, will
be introduced as needed in later chapters. We close Chapter 3 by discussing an
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elegant technique for communication lower bounds, the discrepancy method, and
its generalizations.

Chapter 4 addresses the challenge of proving communication lower bounds
in the randomized model, both for bounded-error protocols and for small-bias pro-
tocols. It is here that we develop our technique, the pattern matrix method, that
converts standard analytic properties of Boolean functions into lower bounds for
the associated communication problems. As an application, we establish the sep-
arations †cc

2 6� PPcc and …cc
2 6� PPcc in communication complexity and solve

an open problem in circuit complexity due to Krause and Pudlák [132]. Various
other applications of the pattern matrix method are presented in later chapters as
we further develop our technique.

Chapter 5 focuses on the quantum model of communication, which is a
counterpart to the classical randomized model. We prove that the pattern matrix
method applies unchanged to this model, yielding a new source of communication
lower bounds. As an illustration of the quantum pattern matrix method, we give
a new and simple proof of Razborov’s breakthrough lower bounds for disjointness
and the other symmetric functions [177]. Finally, we contrast the pattern matrix
method with a different duality-based technique, the block composition method of
Shi and Zhu [205].

Chapter 6 studies the comparative power of classical and quantum commu-
nication. It is a longstanding goal in computational complexity to prove that quan-
tum bounded-error protocols cannot be superpolynomially more efficient than their
classical counterparts. Here, we prove this conjecture for a new class of communi-
cation problems, subsuming previous results. In particular, we prove a polynomial
relationship between the quantum and classical complexity of computing f .x ^ y/

and f .x_y/ on input x; y; where f is any given Boolean function. We prove anal-
ogous results for other function compositions. Finally, the explore the implications
of our techniques for the log-rank conjecture.

Chapter 7 examines the unbounded-error model. Our main result here is a
near-tight lower bound on the unbounded-error communication complexity of ev-
ery symmetric function, i.e., every function of the form f .x; y/ D D.

P
xiyi/ for

some predicate DW f0; 1; : : : ; ng ! f�1;C1g: The pattern matrix method of the
previous chapters continues to play an important role in this chapter but needs to
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be complemented with other results on random walks, matrix analysis, and approx-
imation theory.

Chapter 8 continues our study of unbounded-error communication complex-
ity, this time with a focus on the circuit class AC0

: The main result of this chapter is
the first polynomial lower bound on the unbounded-error communication complex-
ity of a function in AC0

: As a corollary, we establish the separations †cc
2 6� UPPcc

and …cc
2 6� UPPcc in communication complexity, thereby solving a longstanding

open problem due to Babai et al. [23]. As another corollary, we obtain the first
exponential, tight lower bound on the sign-rank of polynomial-size DNF formulas
as well as the first exponential lower bound on the size of threshold-of-majority
circuits for AC0

: This chapter is joint work with A. A. Razborov.

Chapter 9 explores generalizations of the pattern matrix method to mul-
tiparty communication. Recall that the pattern matrix method has been adapted to
multiparty communication and has enabled substantial progress in the area. We give
a detailed and integrated treatment of these developments, which we hope will serve
as a self-contained reference and spur further progress. Covered here are the im-
proved lower bounds for the disjointness function due to Lee and Shraibman [140]
and Chattopadhyay and Ada [59], a separation of NPcc from BPPcc due to David,
Pitassi, and Viola [65], and a separation of NPcc from coNPcc and coMAcc due to
Gavinsky and the author [81].

Chapter 10 determines the relations and gaps among three complexity mea-
sures of a communication problem: product discrepancy, nonproduct discrepancy,
and sign-rank. As a corollary, we prove that the containment PPcc

� UPPcc is
proper. Next, we solve an open problem due to Kushilevitz and Nisan [137], ex-
hibiting a gap of �.1/ versus �.n/ between the product and nonproduct distribu-
tional complexities of a function on n-bit strings. Finally, we prove that product
discrepancy, originally defined in communication complexity, is equivalent to the
learning-theoretic notion of statistical query dimension. Other connections between
learning and communication are established here, involving in particular the notion
of sign-rank. This chapter is placed strategically to provide a segue from Part I on
communication complexity to Part II on learning theory.

Chapter 11 concludes Part I of this thesis with a summary of our contri-
butions in communication complexity and a discussion of several open problems
related to our work.
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Chapter 12, our first chapter on learning theory, focuses on the problem of
PAC learning intersections of halfspaces on the hypercube f0; 1gn: This problem has
long resisted attack and remains a central challenge in the area. Our main result here
shows that in fact, under a widely believed cryptographic assumption, no efficient
algorithm exists for the task. We obtain analogous hardness results for learning
other concept classes, such as majority circuits and arithmetic circuits. Analytic
representations of Boolean functions play a key role in our proofs. This chapter is
joint work with A. R. Klivans.

Chapter 13 continues our work on lower bounds for learning intersec-
tions of halfspaces. Recall that in the previous chapter, we derive representation-
independent, cryptographic hardness results for learning intersections of halfspaces
on f0; 1gn: Here, we complement those results with unconditional lower bounds
for learning intersections of halfspaces in Kearns’ statistical query model [104]. In
particular, we prove that any statistical-query algorithm for learning the intersec-
tion of

p
n halfspaces on f0; 1gn runs in time expf˝.

p
n/g: This lower bound is

an exponential improvement on previous work. In addition, we derive near-tight,
exponential lower bounds on the threshold density of this concept class, placing it
beyond the scope of Jackson’s Harmonic sieve algorithm [98]. This chapter is joint
work with A. R. Klivans.

Chapter 14 studies the agnostic model, an abstraction of learning from noisy
training data. Both algorithmic results and lower bounds for this model have seen
limited progress. We contribute several new lower bounds, ruling out the use of the
current techniques for learning concept classes as simple as decision lists and dis-
junctions. Along the way we relate agnostic learning, via the pattern matrix method,
to our work on communication complexity as well as to an algorithmic problem
known as approximate inclusion/exclusion. Parts of this chapter (Sections 14.3–
14.5) are joint work with A. R. Klivans.

Chapter 15 takes an in-depth look at the sign-representation of Boolean
functions by real polynomials. We prove that, for any Boolean functions f and
g; the intersection f .x/^g.y/ has threshold degree O.d/ if and only if there exist
rational functions F; G of degree O.d/ with kf � F k∞ C kg � Gk∞ < 1: This
characterization extends to conjunctions of three and more functions as well as var-
ious other compositions. This result is of interest because of the applications of
the threshold degree in previous chapters and in earlier literature. As a concrete
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application in the next chapter, we solve an open problem in learning theory, due to
Klivans [120], on the threshold degree of the intersection of two halfspaces.

Chapter 16, as outlined in the previous paragraph, studies the structural
complexity of the intersection of two halfspaces. Specifically, we construct two
halfspaces on f0; 1gn whose intersection has threshold degree �.

p
n/; an expo-

nential improvement on previous lower bounds. This solves an open problem due
to Klivans [120] and rules out the use of perceptron-based techniques for PAC-
learning the intersection of even two halfspaces. We also prove that the intersection
of two majority functions has threshold degree ˝.log n/; which is tight and set-
tles a conjecture of O’Donnell and Servedio [163]. We obtain these results by a
thorough study of the rational approximation of halfspaces, along with the relation-
ship between rational approximation and sign-representation proved in the previous
chapter.

Chapter 17 summarizes our contributions in computational learning theory
and presents a number of open problems related to our work. This chapter con-
cludes Part II on learning theory and the thesis itself.

1.6 Chapter dependencies
We have organized this thesis so as to make certain technical shortcuts available to
readers with an interest in one particular result or application. We provide a chart
of chapter dependencies in Figure 1.3, with Chapters 11 and 17 (summary and
open problems) omitted. This chart only concerns the main results of each chapter.
Observations, remarks, comparisons, and technical results on a lesser scale warrant
additional dependencies.
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Figure 1.3: A chart of chapter dependencies.
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Chapter 2

Notation and Technical Preliminaries
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This chapter sets the stage with notation, conventions, and technical background.
In particular, we will review key analytic properties of Boolean functions and ma-
trices, which play a central role in this thesis. Also covered here are combinatorial
complexity measures of Boolean functions, which ultimately turn out to be closely
related to their analytic counterparts.

2.1 General conventions and notation
We view Boolean functions as mappings X ! f�1;C1g for a finite set X; where
�1 and C1 correspond to “true” and “false,” respectively. Typically, the domain
will be X D f0; 1gn or X D f0; 1gn � f0; 1gn: Given a function f WX ! f�1;C1g;

its negation :f WX ! f�1;C1g is given by :f .x/ � �f .x/: Sometimes we
will write f in place of :f: Given a function f WX ! f�1;C1g and a subset
A � X; we let f jA denote the restriction of f to A: In other words, the function
f jAWA ! f�1;C1g is given by fA.x/ D f .x/: The standard functions ORn;

ANDn; MAJn; PARITYn; each a mapping f0; 1gn ! f�1;C1g; are given by

ORn.x/ D �1 ,

X
xi > 0;

ANDn.x/ D �1 ,

X
xi D n;

MAJn.x/ D �1 ,

X
xi > n=2;

PARITYn.x/ D �1 ,

X
xi is odd:

A predicate is a mapping DW f0; 1; : : : ; ng ! f�1;C1g: The notation Œn� stands
for the set f1; 2; : : : ; ng: For a set S � Œn�; its characteristic vector 1S 2 f0; 1gn is
defined by

.1S/i D

�
1 if i 2 S;

0 otherwise.

For a finite set X; the notation P.X/ stands for the family of all 2jX j subsets of
X: For a string x 2 f0; 1gn and a subset S � f1; 2; : : : ; ng; we define xjS D
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.xi1
; xi2

; : : : ; xijSj
/ 2 f0; 1gjS j; where i1 < i2 < � � � < ijS j are the elements of S:

For b 2 f0; 1g; we write :b D 1 � b: For x 2 f0; 1gn; we adopt the shorthand
jxj D x1 C � � � C xn: For x; y 2 f0; 1gn; the notation x ^ y 2 f0; 1gn refers to
the component-wise conjunction of x and y: Analogously, the string x _ y stands
for the component-wise disjunction of x and y: In particular, the notation jx ^ yj

stands for the number of positions in which the strings x and y both have a 1:

Throughout this thesis, “log” refers to the logarithm to base 2: As usual, we denote
the base of the natural logarithm by e D 2:718 : : : : For any mapping φWX ! R;

where X is a finite set, we adopt the standard notation kφk∞ D maxx2X jφ.x/j and
kφk1 D

P
x2X jφ.x/j: We use the symbol Pd to refer to the family of univariate

real polynomials of degree at most d: We adopt the standard definition of the sign
function:

sgn t D

˚
�1; t < 0;

0; t D 0;

1; t > 0:

Equations and inequalities involving vectors in Rn; such as x < y or x > 0; are to
be interpreted component-wise, as usual.

A halfspace, also known as a linear threshold function or a linear threshold
gate, is a function f W f0; 1gn ! f�1;C1g of the form f .x/ � sgn.

P
aixi �θ/ for

some fixed reals a1; : : : ; an;θ: Observe that a linear threshold gate generalizes the
majority function.

A decision list is a Boolean function f W f0; 1gn ! f�1;C1g specified by a
fixed permutation σ W Œn�! Œn�; a fixed vector a 2 f�1;C1gnC1; and a fixed vector
b 2 f0; 1gn: The computation of f on input x 2 f0; 1gn proceeds as follows. If
xσ.i/ ¤ bi all i D 1; 2; : : : ; n; then one outputs anC1: Otherwise, one outputs ai ;

where i 2 f1; 2; : : : ; ng is the least integer with xσ.i/ D bi :

A Boolean formula is any Boolean circuit in which each gate, except for
the output gate and the inputs x1; : : : ; xn; feeds into exactly one other gate. An
AND/OR/NOT formula is a Boolean formula with gates AND, OR, NOT. A read-
once formula is a Boolean formula in which the inputs x1; : : : ; xn each feed into
at most one gate. Note that it is meaningful to speak of read-once AND/OR/NOT
formulas, for example.
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We now recall the Fourier transform over Zn
2: Consider the vector space of

functions f0; 1gn ! R; equipped with the inner product

hf; gi D 2�n
X

x2f0;1gn

f .x/g.x/:

For S � Œn�; define χS W f0; 1gn ! f�1;C1g by χS.x/ D .�1/
P

i2S xi : Then
fχSgS�Œn� is an orthonormal basis for the inner product space in question. As a
result, every function f W f0; 1gn ! R has a unique representation of the form

f .x/ D
X

S�Œn�

Of .S/χS.x/;

where Of .S/ D hf;χSi. The reals Of .S/ are called the Fourier coefficients of
f: The degree of f; denoted deg.f /; is the quantity maxfjS j W Of .S/ ¤ 0g: It
is clear that the degree-d real polynomials on f0; 1gn are precisely the functions
f W f0; 1gn ! R with deg.f / D d: The orthonormality of fχSg immediately yields
Parseval’s identity:

X
S�Œn�

Of .S/2
D hf; f i D E

x
Œf .x/2�: (2.1)

Observe that the Fourier transform Of is a real function on P.f1; 2; : : : ; ng/: In
particular, we have the shorthands

k Of k∞ D max
S�Œn�

j Of .S/j;

k Of k1 D

X
S�Œn�

j Of .S/j:

The following fact is immediate from the definition of the Fourier coefficients.
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PROPOSITION 2.1. Let f W f0; 1gn ! R be given. Then

k Of k∞ 6 2�n
X

x2f0;1gn

jf .x/j:

For given functions f; gW f0; 1gn ! R; we let fgW f0; 1gn ! R stand for
their pointwise multiplication: .fg/.x/ D f .x/g.x/: In particular, the notation cfg

stands for the Fourier transform of the function fg:

Let Sn stand for the symmetric group on n elements. For a string
x 2 f0; 1gn and a permutation σ 2 Sn; we write σx D .xσ.1/; : : : ; xσ.n//: A
function φW f0; 1gn ! R is called symmetric if φ.x/ � φ.σx/ for all permu-
tations σ 2 Sn: Equivalently, φ is symmetric if the value φ.x/ is uniquely de-
termined by

P
xi : Note that there is a one-to-one correspondence between predi-

cates DW f0; 1; : : : ; ng ! f�1;C1g and symmetric Boolean functions f W f0; 1gn !

f�1;C1g: Namely, one associates a predicate D with the symmetric Boolean func-
tion f .x/ � D.

P
xi/: Observe also that for every function φW f0; 1gn ! R (sym-

metric or not), the derived function

φsymm.x/ D E
σ2Sn

Œφ.σx/�

is symmetric. Symmetric functions on f0; 1gn are intimately related to univariate
polynomials, as demonstrated by Minsky and Papert’s symmetrization argument.

PROPOSITION 2.2 (Minsky and Papert [153]). Let φW f0; 1gn ! R be given, d D

deg.φ/: Then there is a polynomial p 2 Pd with

E
σ2Sn

Œφ.σx/� D p.jxj/

for all x 2 f0; 1gn:

When speaking of communication complexity, we will abuse the terminol-
ogy slightly and use the term symmetric function to refer to functions f W f0; 1gn �
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f0; 1gn ! f�1;C1g of the form f .x; y/ D D.
P

xiyi/ for a given predicate
DW f0; 1; : : : ; ng ! f�1;C1g:

2.2 Analytic properties of Boolean functions
Let f W f0; 1gn ! R be a given function. As we saw in the previous section, any such
function f has an exact representation as a linear combination of the characters
χS ; where jS j 6 deg.f /: A fundamental question to ask is how closely f can be
approximated by a degree-d polynomial, where d � deg.f /: More formally, for
each function f W f0; 1gn ! R; we define

E.f; d/ D min
p
kf � pk∞;

where the minimum is over real polynomials of degree up to d: The ε-approximate
degree of f; denoted degε.f /; is the least d with E.f; d/ 6 ε: In words, the ε-
approximate degree of f is the least degree of a polynomial that approximates f

uniformly within ε: There is an extensive literature on the ε-approximate degree
of Boolean functions [160, 165, 100, 52, 4, 15, 199, 221], for the canonical setting
ε D 1=3 and various other settings. The choice of ε D 1=3 is a convention and can
be replaced by any other constant in .0; 1/; without affecting degε.f / by more than
a multiplicative constant:

PROPOSITION 2.3 (Folklore). Let f W f0; 1gn ! f�1;C1g be a given function, ε a
constant with 0 < ε < 1: Then

degε.f / D �.deg1=3.f //:

PROOF. We assume that ε 6 1=3; the complementary case being analogous. Put
d D deg1=3.f / and fix φ 2 spanfχS W jS j 6 dg such that kf � φk∞ 6 1=3: By
basic approximation theory [185, Cor. 1.4.1], there exists a univariate polynomial p

of degree O.1=ε/ that sends Œ�4
3
;�2

3
�! Œ�1�ε;�1Cε� and Œ2

3
; 4

3
�! Œ1�ε; 1Cε�:

Then p.φ.x// is the sought approximant of f:
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Another well-studied notion is the threshold degree deg˙.f /; defined for
a Boolean function f W f0; 1gn ! f�1;C1g as the least degree of a real polyno-
mial p with f .x/ � sgn p.x/: In words, deg˙.f / is the least degree of a poly-
nomial that represents f in sign. This notion has been investigated in numerous
works [153, 21, 132, 133, 122, 121, 163] in complexity theory and learning theory.
Several synonyms for threshold degree are in use, including “strong degree” [21],
“voting polynomial degree” [132], “PTF degree” [164], and “sign degree” [53]. It
is useful to keep in mind the following alternate characterization of the threshold
degree, as a limit process:

deg˙.f / D lim
ε&0

deg1�ε.f /:

So far we have considered representations of Boolean functions by real
polynomials. Restricting the polynomials to have integer coefficients yields an-
other useful representation scheme. The main complexity measure here is the sum
of the absolute values of the coefficients. Specifically, for a Boolean function
f W f0; 1gn ! f�1;C1g; its degree-d threshold weight W.f; d/ is defined to be the
minimum

P
jS j6d jλS j over all integers λS such that

f .x/ � sgn

 X
S�f1;:::;ng; jS j6d

λSχS.x/

!
: (2.2)

If no such integers λS can be found, we put W.f; d/ D ∞: It is clear that the follow-
ing three conditions are equivalent: W.f; d/ D ∞; E.f; d/ D 1; d < deg˙.f /: In
all expressions involving W.f; d/; we adopt the standard convention that 1=∞ D 0

and minft; ∞g D t for any real t: A closely related notion is the degree-d threshold
density of f; denoted dns.f; d/ and defined to be the minimum jfS W λS ¤ 0gj over
all coefficients λS such that (2.2) holds. If no such coefficients can be found, we let
dns.f; d/ D ∞: We define

W.f / D min
dD0;1;:::;n

W.f; d/

28



and

dns.f / D min
dD0;1;:::;n

dns.f; d/:

There is a substantial body of work on threshold weight and density as well as their
applications [153, 155, 44, 207, 45, 82, 32, 218, 133, 124, 131, 169, 170].

As one might expect, representations of Boolean functions by real and inte-
ger polynomials are closely related. In particular, we have the following relation-
ship between E.f; d/ and W.f; d/:

THEOREM 2.4. Let f W f0; 1gn ! f�1;C1g be given. Then for d D 0; 1; : : : ; n;

1

1 �E.f; d/
6 W.f; d/ 6

2

1 �E.f; d/

( 
n

0

!
C

 
n

1

!
C � � � C

 
n

d

!)3=2

;

with the convention that 1=0 D ∞:

Similar statements have been noted earlier [133, 53]. We prove Theorem 2.4
by modifying a recent analysis due to Buhrman et al. [53, Cor. 1].

PROOF OF THEOREM 2.4. Recall that W.f; d/ D ∞ if and only if E.f; d/ D 1:

In what follows, we focus on the complementary case when W.f; d/ < ∞ and
E.f; d/ < 1:

To prove the lower bound on W.f; d/; fix integers λS with
P

jS j6d jλS j D

W.f; d/ such that the polynomial p.x/ D
P

jS j6d λSχS.x/ satisfies f .x/ �

sgn p.x/: Then 1 6 f .x/p.x/ 6 W.f; d/ and therefore

E.f; d/ 6





f �
1

W.f; d/
p






∞

6 1 �
1

W.f; d/
:

To prove the upper bound on W.f; d/; fix any degree-d polynomial p such
that kf �pk∞ D E.f; d/: Define δ D 1�E.f; d/ > 0 and N D

Pd
iD0

�
n

i

�
: For a
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real t; let rnd t be the result of rounding t to the closest integer, so that jt � rnd t j 6
1=2: We claim that the polynomial

q.x/ D
X

jS j6d

rnd.M Op.S//χS.x/;

where M D 3N=.4δ/; satisfies f .x/ � sgn q.x/: Indeed,

ˇ̌̌̌
f .x/ �

1

M
q.x/

ˇ̌̌̌
6 jf .x/ � p.x/j C

1

M
jMp.x/ � q.x/j

6 1 � δ C
1

M

X
jS j6d

jM Op.S/ � rnd.M Op.S//j

6 1 � δ C
N

2M
< 1:

It remains to examine the sum of the coefficients of q: We have:

X
jS j6d

j rnd.M Op.S//j 6
1

2
N CM

X
jS j6d

j Op.S/j

6
1

2
N CM

�
N E

x

�
p.x/2

��1=2

6
2N
p

N

δ
;

where the second step follows by an application of the Cauchy-Schwarz inequality
and Parseval’s identity (2.1).
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A polynomial threshold function (PTF) of degree d is any function
f W f0; 1gn ! f�1;C1g that can be expressed as

f .x/ D sgn

 X
jS j6d

λSχS.x/

!
(2.3)

for some integer coefficients λS : The weight of a polynomial threshold function f

is the minimum
P
jλS j over all choices of coefficients λS for which (2.3) holds.

In this terminology, the threshold degree of a given Boolean function f W f0; 1gn !

f�1;C1g is the least d for which f is a degree-d polynomial threshold function.
Analogously, the degree-d threshold weight of a given Boolean function f is the
weight of f as a degree-d polynomial threshold function. Observe that the terms
“halfspace” and “linear threshold function” are equivalent.

For a fixed d; a sequence of degree-d polynomial threshold functions
f1; f2; : : : ; fn; : : : ; where fnW f0; 1gn ! f�1;C1g; is called light if W.fn; d / 6 nc

for some constant and all n: More generally, a sequence C1; C2; : : : ; Cn; : : : ; where
Cn is a family of degree-d polynomial threshold functions on f0; 1gn; is called light
if maxf 2Cn

W.f; d/ 6 nc for some constant c > 1 and all n: A common use of this
terminology is to speak of light halfspaces, as in Chapter 12.

We now recall Paturi’s tight estimate [165] of the approximate degree for
each symmetric Boolean function.

THEOREM 2.5 (Paturi [165]). Let f W f0; 1gn ! f�1;C1g be a given function such
that f .x/ � D.

P
xi/ for some predicate DW f0; 1; : : : ; ng ! f�1;C1g: Then

deg1=3.f / D �
�p

n`0.D/C
p

n`1.D/
�

;

where `0.D/ 2 f0; 1; : : : ; bn=2cg and `1.D/ 2 f0; 1; : : : ; dn=2eg are the smallest
integers such that D is constant in the range Œ`0.D/; n � `1.D/�:

The notions of uniform approximation and sign-representation, defined
above for Boolean functions on the hypercube, extend naturally to any finite domain
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X � Rn: Specifically, the ε-approximate degree of a function f WX ! f�1;C1g;

denoted degε.f /; is the least degree of a real polynomial with kf �pk∞ 6 ε: Anal-
ogously, the threshold degree of a function f WX ! f�1;C1g; denoted deg˙.f /;

is the least degree of a real polynomial with f .x/ � sgn p.x/:

2.3 Combinatorial properties of Boolean functions
Every function f W f0; 1gn ! R has a unique representation of the form

f .x/ D
X

S�f1;:::;ng

αS

Y
i2S

xi

for some reals αS : This representation is to be contrasted with the Fourier transform
of f; discussed above. We define the monomial count or number of monomials in
f by mon.f / D jfS W αS ¤ 0gj:

For i D 1; 2; : : : ; n; we let ei 2 f0; 1gn stand for the vector with 1 in the
i th component and zeroes everywhere else. For a set S � f1; : : : ; ng; we define
eS 2 f0; 1gn by eS D

P
i2S ei : In particular, e∅ D 0: Fix a Boolean function

f W f0; 1gn ! f�1;C1g: For ` D 1; 2; : : : ; n; the `-block sensitivity of f; denoted
bs`.f /; is defined as the largest k for which there exist nonempty disjoint sets
S1; : : : ; Sk � f1; : : : ; ng; each containing no more than ` elements, such that

f .´˚ eS1
/ D f .´˚ eS2

/ D � � � D f .´˚ eSk
/ ¤ f .´/

for some ´ 2 f0; 1gn: One distinguishes two extremal cases. The sensitivity of f;

denoted s.f /; is defined by s.f / D bs1.f /: The block sensitivity of f; denoted
bs.f /; is defined by bs.f / D bsn.f /: In this context, the term block simply refers
to a subset S � f1; 2; : : : ; ng: We say that block S � f1; 2; : : : ; ng is sensitive for f

on input ´ if f .´/ ¤ f .´˚ eS/: Sensitivity, block sensitivity, and `-block sensitiv-
ity were introduced by Cook et al. [63], Nisan [158], and Kenyon and Kutin [109],
respectively. Buhrman and de Wolf [54] define an additional variant of sensitivity:
the zero block sensitivity of f; denoted zbs.f /; is the largest k for which there exist
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nonempty disjoint sets S1; : : : ; Sk � f1; : : : ; ng such that

f .´˚ eS1
/ D f .´˚ eS2

/ D � � � D f .´˚ eSk
/ ¤ f .´/

for some ´ 2 f0; 1gn with ´jS1[���[Sk
D .0; 0; : : : ; 0/: As an illustrative example, the

AND function on n bits satisfies s.ANDn/ D bs.ANDn/ D n and zbs.ANDn/ D 1:

Similarly, we have s.ORn/ D bs.ORn/ D zbs.ORn/ D n:

A decision tree is a classical combinatorial model of computation. Given a
function f W f0; 1gn ! f�1;C1g; consider the task of determining f .x/ by adap-
tively querying individual bits of x D .x1; : : : ; xn/: The complexity measure of
interest is the maximum number of bits queried on any input x before the value
f .x/ is known. Any valid algorithm for f in this model can be represented by a
rooted binary tree whose internal nodes are labeled with integers from f1; 2; : : : ; ng;

whose leafs are labeled �1 or C1; and whose edges are labeled 0 or 1: This rep-
resentation, called a decision tree, has the obvious semantics: one starts at the root
node, queries the variable that corresponds to the node’s label i; branches to the
right or left depending on the value of xi ; and continues the process until a leaf is
reached and the value f .x/ is known. The decision tree complexity dt.f / is the
least complexity of a query algorithm for f; or equivalently, the least depth of a
decision tree for f:

It is well-known [158, 160] that the decision tree complexity dt.f /; block
sensitivity bs.f /; degree deg.f /; and approximate degree deg1=3.f / are polyno-
mially related for every Boolean function f W f0; 1gn ! f�1;C1g: For the purposes
of this thesis, we note down the following relationships.

THEOREM 2.6 (Nisan and Smolensky [55, Thm. 12]). For every Boolean function
f W f0; 1gn ! f�1;C1g;

deg.f / 6 dt.f / 6 2 deg.f /4:
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THEOREM 2.7 (Nisan and Szegedy [160]). For every f W f0; 1gn ! f�1;C1g;

bs.f / 6 O.deg1=3.f /2/:

THEOREM 2.8 (Beals et al. [28, �5]). For every f W f0; 1gn ! f�1;C1g;

dt.f / 6 bs.f /3:

A consequence of Theorems 2.7 and 2.8 is the following result.

THEOREM 2.9 (Beals et al. [28, �5]). For every f W f0; 1gn ! f�1;C1g;

dt.f / 6 O.deg1=3.f /6/:

It is unknown whether sensitivity is polynomially related to block sensitivity
and the other quantities that figure in Theorems 2.6–2.9. An elegant result due to
Kenyon and Kutin [109] shows, however, that the sensitivity and `-block sensitivity
of a Boolean function are polynomially related for all constant `: For our purposes,
the case ` D 2 is all that is needed.

THEOREM 2.10 (Kenyon and Kutin [109, Cor. 3.1]). For every f W f0; 1gn !

f�1;C1g;

˝.
p

bs2.f // 6 s.f / 6 bs.f /:

The lower bound in Theorem 2.10 is asymptotically tight [187]. We refer the
interested reader to the excellent survey by Buhrman and de Wolf [55] for further
results on decision trees and related combinatorial complexity measures.
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2.4 Matrix analysis
Matrix analysis plays a considerable role in this thesis. We assume familiarity with
basic matrix-analytic notions and facts, viz., the singular value decomposition, pos-
itive semidefinite matrices, matrix similarity, matrix trace and its properties, the
Kronecker product and its spectral properties, the relation between singular values
and eigenvalues, and eigenvalue computation for matrices of simple form. This ma-
terial is entirely classical, with a variety of excellent texts available. Standard ref-
erences on the subject are the monographs by Golub and Van Loan [85] and Horn
and Johnson [95]. The review below is limited to notation and the more substantial
results.

The symbol Rm�n refers to the family of all m�n matrices with real entries.
A sign matrix is a matrix with entries C1 or �1: A probability matrix is a matrix
whose entries are nonnegative and sum to 1: We specify matrices by their generic
entry, e.g., A D ŒF .i; j /�i;j : In most matrices that arise in this work, the exact
ordering of the columns (and rows) is irrelevant. In such cases we describe a matrix
by the notation ŒF .i; j /�i2I; j 2J ; where I and J are some index sets. We denote
the rank of A 2 Rm�n by rk A: We also write

kAk∞ D max
i;j
jAij j; kAk1 D

X
i;j

jAij j:

We denote the singular values of A by σ1.A/ > σ2.A/ > � � � > σminfm;ng.A/ > 0:

Recall that the spectral norm, trace norm, and Frobenius norm of A are given by

kAk D max
x2Rn; kxkD1

kAxk D σ1.A/;

kAk˙ D

X
σi.A/;

kAkF D

rX
A2

ij D

rX
σi.A/2:
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The vector norm k � k above and throughout this thesis is the Euclidean norm k � k2:

The following relationship follows at once by the Cauchy-Schwarz inequality:

kAk˙ 6 kAkF

p
rk A .A 2 Rm�n/: (2.4)

For a square matrix A 2 Rn�n; its trace is given by tr A D
P

Ai i :

Recall that every matrix A 2 Rm�n has a singular value decomposition
A D U˙V T; where U and V are orthogonal matrices and ˙ is diagonal with
entries σ1.A/;σ2.A/; : : : ;σminfm;ng.A/: For A; B 2 Rm�n; we write hA; Bi DP

Aij Bij D tr.ABT/: The Hadamard product of matrices A D ŒAij � and B D

ŒBij �; also known as the Schur product, is given by A ı B D ŒAij Bij �: The Kro-
necker product of A D ŒAij � and B D ŒBkl � is given by A˝B D ŒAij Bkl �.i;k/;.j;l/:

A useful consequence of the singular value decomposition is:

hA; Bi 6 kAk kBk˙ .A; B 2 Rm�n/: (2.5)

Following Razborov [177], we define the ε-approximate trace norm of a
matrix F 2 Rm�n by

kF k˙;ε D minfkAk˙ W kF � Ak∞ 6 εg:

The next proposition is a trivial consequence of (2.5).

PROPOSITION 2.11. Let F 2 Rm�n and ε > 0: Then

kF k˙;ε > sup
Ψ¤0

hF;Ψ i � εkΨk1

kΨk
:

PROOF. Fix any Ψ ¤ 0 and A such that kF �Ak∞ 6 ε: Then hA;Ψ i 6 kAk˙kΨk
by (2.5). On the other hand, hA;Ψ i > hF;Ψ i�kA�F k∞kΨk1 > hF;Ψ i� εkΨk1:

Comparing these two estimates gives the sought lower bound on kAk˙ :
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Following Buhrman and de Wolf [54], we define the ε-approximate rank of
a matrix F 2 Rm�n by

rkε F D minfrk A W kF � Ak∞ 6 εg:

The approximate rank and approximate trace norm are related by virtue of the sin-
gular value decomposition, as follows.

PROPOSITION 2.12. Let F 2 Rm�n and ε > 0 be given. Then

rkε F >
.kF k˙;ε/

2P
i;j .jFij j C ε/2

:

PROOF (adapted from [126]). Fix A with kF � Ak∞ 6 ε: Then

kF k˙;ε 6 kAk˙

6 kAkF

p
rk A

6

 X
i;j

.jFij j C ε/2

!1=2
p

rk A:

The sign-rank of a matrix F 2 Rm�n; denoted rk˙ F; is the least rank of a
real matrix A such that Fij Aij > 0 for all i; j with Fij ¤ 0: In words, the sign-rank
of F is the least rank of a real matrix with the same sign pattern as F; except for
any zero entries in F: For sign matrices F 2 f�1;C1gm�n; an equivalent definition
is

rk˙ F D lim
ε&0

rk1�ε F:

This fundamental notion has been studied in contexts as diverse as matrix anal-
ysis, communication complexity, circuit complexity, and computational learning
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theory [167, 13, 35, 70, 71, 122, 142] and figures prominently in this thesis. In gen-
eral, the sign-rank of a matrix can be vastly smaller than its rank. For example, con-
sider the following nonsingular matrices of order n > 3; representing well-known
problems GREATER-THAN and EQUALITY in communication complexity:

26666664
1

1
1

1

�1

:: :

1
1

37777775 ;

26666664
�1
�1
�1

1

1

:: :

�1
�1

37777775 :

These matrices have sign-rank at most 2 and 3; respectively. Indeed, the first matrix
has the same sign pattern as the matrix Œ2.j � i/C 1�i;j : The second has the same
sign pattern as the matrix Œ.1�ε/�hvi ; vj i�i;j ; where v1; v2; : : : ; vn 2 R2 are arbi-
trary pairwise distinct unit vectors and ε is a suitably small positive real, cf. Paturi
and Simon [167, �5].

We close this section with a classical bound on the trace norm of a matrix
product, which we state with a proof for the reader’s convenience.

PROPOSITION 2.13. For all real matrices A and B of compatible dimensions,

kABk˙ 6 kAkF kBkF:

PROOF. Write the singular value decomposition AB D U˙V T: Let u1; u2; : : : and
v1; v2; : : : stand for the columns of U and V; respectively. By definition, kABk˙
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is the sum of the diagonal entries of ˙: We have:

kABk˙ D

X
.U TABV /i i D

X
.uT

i A/.Bvi/

6
X
kATuik kBvik

6

rX
kATuik

2

rX
kBvik

2 D kU TAkF kBV kF

D kAkF kBkF:

Hadamard product and inner product generalize from matrices to arbitrary
tensors, as follows. For tensors A; BWX1 � � � � � Xk ! R; where Xi is a finite set,
i D 1; 2; : : : ; k; define

hA; Bi D
X

x12X1

� � �

X
xk2Xk

A.x1; : : : ; xk/B.x1; : : : ; xk/:

Define the Hadamard product of A and B to be the tensor AıBWX1�� � ��Xk ! R
given by .A ı B/.x1; : : : ; xk/ D A.x1; : : : ; xk/B.x1; : : : ; xk/:

2.5 Learning-theoretic complexity measures
Let X be a finite set, such as X D f0; 1gn: Let C be a given set of functions
X ! f�1;C1g: Computational learning theory is concerned with the task of ef-
ficiently constructing an approximation to an unknown function f based only on
the membership f 2 C and on the values of f on a small sample of points from
X: The given set C of functions is called a concept class. We identify C with its
characteristic matrix MC ; given by MC D Œf .x/�f 2C ;x2X : In what follows, we use
C and its characteristic matrix interchangeably.
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Let µ be a probability distribution over X: Then the following is a natural
notion of distance between functions f; gWX ! f�1;C1g:

�µ.f; g/ D P
x�µ

h
f .x/ ¤ g.x/

i
:

A central model in learning theory is Valiant’s probably approximately correct
model [213], commonly abbreviated PAC. A concept class C is PAC-learnable
to accuracy ε and confidence δ under distribution µ from m examples if there
is an algorithm L that, for every unknown f 2 C ; takes as input i.i.d. exam-
ples x.1/; x.2/; : : : ; x.m/ � µ and their labels f .x.1//; f .x.2//; : : : ; f .x.m//; and
with probability at least 1 � δ produces a hypothesis hWX ! f�1;C1g with
�µ.h; f / 6 ε: The probability is over the random choice of examples and any
internal randomization in L:

For a sign matrix A and its corresponding concept class, define its Vapnik-
Chervonenkis dimension vc.A/ to be the largest d such that A features a 2d �

d submatrix whose rows are the distinct elements of f�1;C1gd : The Vapnik-
Chervonenkis dimension is a combinatorial quantity that exactly captures the learn-
ing complexity of a concept class. This is borne out by the following classical
theorem due to Vapnik and Chervonenkis [215] and Blumer et al. [42].

THEOREM 2.14 (Vapnik-Chervonenkis Theorem [215, 42]). Let C be a concept
class and µ a distribution. Then C is learnable to accuracy ε and confidence δ
under µ from

m D O

�
1

ε
log

1

δ
C

vc.C /

ε
log

1

ε

�

examples. Moreover, any algorithm that outputs as a hypothesis some member of
C consistent with the given m examples will successfully learn C :

The precise formulation above can be found, along with a proof, in the
textbook by Kearns and Vazirani [108, Thm. 3.3]. Theorem 2.14 almost matches the
information-theoretic lower bounds on the number of examples necessary. These
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lower bounds come in many different flavors; for example, see [108, Thm. 3.5]. We
will need the following specialized version.

PROPOSITION 2.15 (Sherstov [197]). Let µ be a probability distribution and C

a concept class such that �µ.f; f 0/ > ε for every two distinct f; f 0 2 C : Then
learning C to accuracy ε=2 and confidence δ under µ requires logfjC j.1 � δ/g

examples.

PROOF. Let L be a learner for C that uses m examples, achieving accuracy ε=2 and
confidence δ: View L as a function L.x.1/; y1; : : : ; x.m/; ym; r/ that takes labeled
training examples and a random string as input and outputs a hypothesis. With this
notation, we have:

E
f 2C

�
P

x.1/;:::;x.m/;r

h
�µ

�
f; L

�
x.1/; f .x.1//; : : : ; x.m/; f .x.m//; r

��
6
ε
2

i�
> 1 � δ:

Reordering the expectation and probability operators yields

E
x.1/;:::;x.m/;r

�
P

f 2C

h
�µ

�
f; L

�
x.1/; f .x.1//; : : : ; x.m/; f .x.m//; r

��
6
ε
2

i�
> 1 � δ:

Thus, there is a fixed choice of x.1/; : : : ; x.m/; r for which

P
f 2C

h
�µ

�
f; L

�
x.1/; f .x.1//; : : : ; x.m/; f .x.m//; r

��
6
ε
2

i
> 1 � δ: (2.6)

With x.1/; : : : ; x.m/; r fixed in this way, algorithm L becomes a deterministic map-
ping from f�1;C1gm to the hypothesis space. In particular, L can output at most 2m

different hypotheses. Equation (2.6) says that L produces .ε=2/-approximates for at
least .1�δ/ jC j functions in C : Since no hypothesis can be an .ε=2/-approximator
for two different functions in C ; we have 2m > .1 � δ/ jC j:

Of considerable algorithmic importance in learning theory is the notion of a
Euclidean embedding. Let A 2 f�1;C1gM�N be a given sign matrix, correspond-
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ing to some concept class. A Euclidean embedding of A is any system of vectors
u1; : : : ; uM 2 Rk and v1; : : : ; vN 2 Rk (for some finite k) such that hui ; vj iAij > 0

for all i; j: The integer k is called the dimension of the embedding. The quantity

γ D min
i;j

jhui ; vj ij

kuik kvjk

is called the margin of the embedding. Observe that in the terminology of Sec-
tion 2.4, the smallest dimension of a Euclidean embedding of A is precisely rk˙ A:

The margin complexity mc.A/ is the minimum 1=γ over all embeddings of A:

Recall that ei denotes the vector with 1 in the i th component and zeroes else-
where. The following is a trivial embedding of a sign matrix A D Œ a1 j : : : j aN � 2

f�1;C1gM�N W label the rows by vectors e1; : : : ; eM 2 RM and the columns by
vectors a1; : : : ; aN : It is clear that this embedding has dimension M and margin
1=
p

M: By interchanging the roles of the rows and columns, we obtain the follow-
ing well-known fact:

PROPOSITION 2.16. Let A 2 f�1;C1gM�N : Then

1 6 rk˙ A 6 minfM; N g;

1 6 mc.A/ 6 min
np

M;
p

N
o

:

The final learning-theoretic complexity measure in this section pertains to
learning by statistical queries, a model due to Kearns [104] that will receive thor-
ough treatment in Part II of this thesis. Let X be a finite set. For a family C

of functions X ! f�1;C1g and a distribution µ on X; the statistical query (SQ)
dimension of C under µ; denoted sqµ.C /; is defined as the largest integer d for
which there are functions f1; f2; : : : ; fd 2 C such that

ˇ̌̌̌
E

x�µ

h
fi.x/fj .x/

iˇ̌̌̌
6

1

d
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for all i ¤ j: We put sq.C / D maxµ sqµ.C /: For a sign matrix A 2 f�1;C1gM�N ;

we define sqµ.A/ D sqµ.C / and sq.A/ D sq.C /; where C is the concept
class with characteristic matrix A: To illustrate, the Hadamard matrix H D

Œ.�1/
P

xi yi �x;y2f0;1gn satisfies H TH D 2nI and thus has SQ dimension 2n with
respect to the uniform distribution on the columns.

An excellent reference for further background on computational learning is
the textbook by Kearns and Vazirani [108].

2.6 Summary
This chapter introduced a variety of definitions and background results on the ana-
lytic and combinatorial theory of Boolean functions and matrices. For the reader’s
convenience, we provide a table of the key quantities introduced here, along with a
brief definition and a page reference for each. A comprehensive table of all symbols
and notation in this thesis is available in Appendix A.

Symbol Meaning Pages
Œn� the set f1; 2; : : : ; ng 23
1S ; eS the characteristic vector of S � f1; 2; : : : ; ng 23, 32
ei the characteristic vector of fig 32
jxj the Hamming weight

P
xi 24

xjS projection of x 2 f0; 1gn onto the set S � f1; 2; : : : ; ng 23
Pd the family of univariate polynomials of degree up to d 24
Sn the symmetric group on n elements 26
σx the string .xσ.1/; : : : ; xσ.n// 26
Of .S/ Fourier transform of a function f W f0; 1gn ! R 25

fg pointwise product of functions f; gW f0; 1gn ! R 26
χS character of the Fourier transform on Zn

2 25
E.f; d/ least error in a degree-d uniform approximation of f 27
W.f; d/ degree-d threshold weight of f 28
dns.f; d/ degree-d threshold density of f 28
W.f / threshold weight of f 28
dns.f / threshold density of f 29
degε.f / ε-approximate degree of f 32
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Symbol Meaning Pages
deg˙.f / threshold degree of f 32
mon.f / monomial count of f 32
s.f / sensitivity of f 32
bs.f / block sensitivity of f 32
bs`.f / `-block sensitivity of f 32
zbs.f / zero block sensitivity of f 32
dt.f / decision tree complexity of f 33
rk A rank of a real matrix A 35
rkε A ε-approximate rank of a real matrix A 36
rk˙ A sign-rank of a real matrix A 37
tr A trace of a square real matrix A 36
σi .A/ the i th largest singular value of a real matrix A 35
hA; Bi inner product of real matrices or tensors A and B 36
A ı B Hadamard product of real matrices or tensors A and B 36
A˝ B Kronecker product of real matrices A and B 36
k � k∞ `∞ norm on real functions and matrices 24, 35
k � k1 `1 norm on real functions and matrices 24, 35
k � k Euclidean norm on vectors or spectral norm on matrices 36
k � kF Frobenius norm on matrices 35
k � k˙ trace norm on matrices 35
k � k˙;ε ε-approximate trace norm on matrices 36
vc.A/ Vapnik-Chervonenkis dimension of the sign matrix A 40
mc.A/ margin complexity of the sign matrix A 42
sq.A/ statistical query (SQ) dimension of the sign matrix A 42
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Part I

Communication Complexity
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Chapter 3

Fundamentals of Communication Complexity
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This chapter sets the stage for our results on communication complexity. We de-
scribe the canonical framework of communication complexity and review the de-
terministic, randomized, and nondeterministic models. More advanced formalisms,
such as the quantum, unbounded-error, and multiparty models, will be introduced as
needed in later chapters. We close this chapter by discussing an important technique
for communication lower bounds, the discrepancy method, and its generalizations.

3.1 Deterministic, nondeterministic, and randomized models
Communication complexity studies the amount of communication necessary in or-
der to compute a given Boolean function when its arguments are distributed among
several parties. Initiated in a seminal paper by Yao [223] over three decades ago,
communication complexity has evolved in a central topic of complexity theory,
studied for its intrinsic appeal as well as numerous applications to circuit complex-
ity, computational learning theory, streaming algorithms, data structures, quantum
computing, and other fundamental topics in theoretical computer science.

The simplest models in communication complexity are the deterministic and
nondeterministic models. Let f WX � Y ! f�1;C1g be a given function, where
X and Y are finite sets. There are two parties, traditionally called Alice and Bob.
Alice receives an input x 2 X; Bob receives y 2 Y; and their objective is to compute
f .x; y/: The exact meaning of compute will depend on the communication model
in question. Alice and Bob communicate by exchanging bits 0 and 1 via a shared
communication channel, according to a protocol agreed upon in advance. Formally,
a protocol is a fixed agreement between Alice and Bob that specifies:

(1) for each history of previously transmitted bits, an output value �1 or C1 if
the communication is over, and an indication of who is to speak next if the
communication is to continue;

(2) for the party to speak next, a value 0 or 1 that is to be transmitted, based
on the history of previously transmitted bits and the party’s own input (x for
Alice, y for Bob).

The cost of a protocol is the maximum number of bits exchanged on any input
.x; y/: A protocol is said to compute f deterministically if the output of the pro-
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tocol on input .x; y/ is always f .x; y/: A protocol is said to compute f nonde-
terministically if the protocol always outputs C1 on inputs .x; y/ 2 f �1.C1/ and
outputs �1 at least on some executions for every input .x; y/ 2 f �1.�1/: The de-
terministic (respectively, nondeterministic) communication complexity of f is the
least cost of a protocol that computes f deterministically (respectively, nondeter-
ministically). The deterministic and nondeterministic communication complexities
of f are denoted D.f / and N.f /; respectively. The co-nondeterministic commu-
nication complexity of f is the quantity N.�f /:

In the randomized model, the parties further have access to an unlimited
supply of shared random bits. The cost of a randomized protocol is still the max-
imum number of bits exchanged between the parties on any input. A randomized
protocol is said to compute f with error ε if on every input .x; y/; the protocol
produces the correct output f .x; y/ with probability at least 1�ε: The ε-error ran-
domized communication complexity of f; denoted Rε.f /; is the least cost of a ran-
domized protocol that computes f with error ε: The canonical setting is ε D 1=3;

corresponding to bounded-error randomized communication complexity, but any
other parameter ε 2 .0; 1=2/ can be considered. In particular, it is of consider-
able importance to understand small-bias randomized communication complexity,
which corresponds to ε D 1

2
� o.1/: It is useful to keep in mind that the error

probability of a randomized protocol can be reduced from 1=3 to any desired con-
stant ε > 0 by executing the protocol �

�
log 1

ε

�
times and outputting the majority

answer. In other words, one has

Rε.f / D O

�
R1=3.f / log

1

ε

�

by basic probability, and thus the setting ε D 1=3 entails no loss of generality in
the study of bounded-error communication complexity.

Applications of communication complexity have motivated numerous other
models of communication, including the unbounded-error model, multiparty mod-
els, and quantum models. We will take a close look these models in later chapters
of this thesis. In the meantime, the interested reader may wish to consult the book
by Kushilevitz and Nisan [137], a treasure trove of information on communication
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complexity. An introductory chapter in a thesis, no matter how detailed, cannot
rival the encyclopedic treatment given to the subject by Kushilevitz and Nisan.

3.2 Discrepancy method
Crucial to the study of communication complexity is the notion of discrepancy.
This concept figures prominently in the study of bounded-error and small-bias com-
munication as well as various applications, such as learning theory and circuit com-
plexity. Formally, for a Boolean function f WX � Y ! f�1;C1g and a probability
distribution µ on X � Y; the discrepancy of f under µ is defined by

discµ.f / D max
S�X;
T �Y

ˇ̌̌̌
ˇ̌X
x2S

X
y2T

µ.x; y/f .x; y/

ˇ̌̌̌
ˇ̌ : (3.1)

We put

disc.f / D min
µ
fdiscµ.f /g:

A product distribution µ on X � Y is a distribution that has the representation
µ.x; y/ D µX.x/µY .y/ for some distributions µX and µY on X and Y; respec-
tively. We let disc�.f / stand for the minimum discrepancy of f under product
distributions:

disc�.f / D min
µ product

fdiscµ.f /g:

Throughout this thesis, we will identify a function f WX � Y ! f�1;C1g

with its communication matrix F D Œf .x; y/�x;y : For example, we will use the
conventions discµ.F / D discµ.f / and disc.F / D disc.f /: Furthermore, it is natu-
ral to identify a probability matrix P D ŒPxy� with the probability distribution µ on
X�Y given byµ.x; y/ D Pxy : In such cases we write discP .F / to mean discµ.f /:
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We will shortly see that, in a precise and meaningful sense, the discrepancy disc.F /

can be regarded as a combinatorial complexity measure of the sign matrix F:

Intimately related to randomized communication complexity is what is
called the distributional communication complexity. For a function f WX � Y !

f�1;C1g and a distribution µ on X � Y; the µ-distributional communication com-
plexity D

µ
ε .f / is the least cost of a deterministic protocol ˘ WX � Y ! f�1;C1g

such that PµŒ˘.x; y/ D f .x; y/� > 1 � ε: Yao observed [224] the following rela-
tionship in light of the famous minimax theorem for zero-sum games.

THEOREM 3.1 (Yao [224]). Let f WX � Y ! f�1;C1g be a given function, for
finite sets X and Y: Then

Rε.f / D max
µ
fDµ

ε .f /g :

A detailed derivation of this result is also available in the monograph of
Kushilevitz and Nisan [137, Thm. 3.20]. Yao’s observation has been the basis for
most lower bounds on randomized communication complexity: one defines a prob-
ability distribution µ on X � Y and argues that the cost of the best deterministic
protocol with error at most ε over µ must be high. Discrepancy provides a power-
ful means of proving lower bounds on distributional communication complexity, as
shown in the following result (see Kushilevitz and Nisan [137], pp. 36–38).

PROPOSITION 3.2 (Discrepancy method). For every function f WX � Y !

f�1;C1g; every γ 2 .0; 1/; and every distribution µ on X � Y;

R1=2�γ=2.f / > D
µ
1=2�γ=2

.f / > log
� γ

discµ.f /

�
:

Proposition 3.2 is frequently used to derive communication lower bounds
not only for bounded-error protocols but also protocols with error 1

2
� o.1/: In this

latter context, one says that a protocol has advantage γ if the protocol has error
probability 1

2
�

1
2
γ : Proposition 3.2 bears out our earlier remark that discrepancy
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can be viewed as a combinatorial complexity measure of a sign matrix, with small
discrepancy corresponding to high complexity.

Now that we have seen that discrepancy is an important quantity, we discuss
techniques for estimating it. The following result gives a bound on the discrepancy
that does not feature a bothersome maximization operator as in (3.1).

LEMMA 3.3 (Discrepancy estimate [25, 62, 173, 69]). Let f WX � Y ! f�1;C1g

be a given function, where X and Y are finite sets. Let µ be a probability distribu-
tion over X � Y: Then

discµ.f /2 6 jX j
X

y;y02Y

ˇ̌̌̌
ˇX
x2X

µ.x; y/µ.x; y 0/f .x; y/f .x; y 0/

ˇ̌̌̌
ˇ :

PROOF (adapted from [173]). Let S � X and T � Y be sets for which the max-
imum is achieved in (3.1), and let R D S � T: Define αx D 1 for all x 2 S;

and likewise βy D 1 for all y 2 T: For all remaining x and y; let αx and βy

be independent random variables distributed uniformly over f�1;C1g: Passing to
expectations,

ˇ̌̌̌
ˇE
"X

x;y

αxβyµ.x; y/f .x; y/

#ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ̌̌ X
.x;y/2R

EŒ αxβy–
D1

�µ.x; y/f .x; y/C
X

.x;y/62R

EŒαxβy�˜
D0

µ.x; y/f .x; y/

ˇ̌̌̌
ˇ̌̌

D discµ.M/:

In particular, there exists a fixed assignment αx;βy 2 f�1;C1g for all x; y such
that

discµ.f / 6

ˇ̌̌̌
ˇX

x;y

αxβyµ.x; y/f .x; y/

ˇ̌̌̌
ˇ :
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Squaring both sides and applying the Cauchy-Schwarz inequality,

discµ.f /2 6 jX j
X

x

 
αx

X
y

βyµ.x; y/f .x; y/

!2

D jX j
X
y;y0

βyβy0

X
x

µ.x; y/µ.x; y 0/f .x; y/f .x; y 0/

6 jX j
X
y;y0

ˇ̌̌̌
ˇX

x

µ.x; y/µ.x; y 0/f .x; y/f .x; y 0/

ˇ̌̌̌
ˇ ;

as desired.

We close this section with a matrix-analytic reformulation of discrepancy,
following Kushilevitz and Nisan [137, Ex. 3.29].

PROPOSITION 3.4. Let X; Y be finite sets, f WX�Y ! f�1;C1g a given function.
Then

discP .f / 6
p
jX j jY j kP ı F k;

where F D Œf .x; y/�x2X; y2Y and P is any probability matrix. In particular,

disc.f / 6
p
jX j jY jmin

P
kP ı F k;

where the minimum is over probability matrices P:
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PROOF. We have:

discP .f / D max
S;T

ˇ̌
1T

S .P ı F / 1T

ˇ̌
6 max

S;T

n
k1Sk � kP ı F k � k1T k

o
D kP ı F k

p
jX j jY j:

To illustrate Proposition 3.4, consider the well-studied inner product func-
tion IPnW f0; 1gn � f0; 1gn ! f�1;C1g; given by IPn.x; y/ D .�1/

P
xi yi :

PROPOSITION 3.5 (Discrepancy of inner product [61, 23, 137]). Let U stand for
the uniform distribution on f0; 1gn � f0; 1gn: Then

discU .IPn/ 6 2�n=2:

In particular,

R1=3.IPn/ > DU
1=3.IPn/ D �.n/: (3.2)

PROOF (adapted from [137]). Let H D Œ.�1/
P

xi yi �x;y2f0;1gn be the communica-
tion matrix of IPn: By Proposition 3.4,

discU .IPn/ 6 2n
k4�nHk D 2�n=2;

where the last equality exploits the fact that H TH D 2nI: This upper bound on the
discrepancy, along with Proposition 3.2, forces (3.2).
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3.3 Generalized discrepancy method
As one can see from Proposition 3.2, the discrepancy method is particularly strong
in that it gives communication lower bounds for protocols with error probability
vanishingly close to trivial, 1

2
� o.1/: This strength of the discrepancy method is at

once a weakness when it comes to proving lower bounds for bounded-error commu-
nication. Let us consider a classical example of this phenomenon, the disjointness
function.

EXAMPLE 3.6. The well-studied disjointness function DISJnW f0; 1gn � f0; 1gn !

f�1;C1g is given by DISJn.x; y/ D
Wn

iD1.xi ^ yi/: We claim that this function
has an efficient randomized protocol with nonnegligible probability of correctness.
Specifically, Alice and Bob randomly pick an index i 2 f1; 2; : : : ; ng and exchange
the bits xi and yi : If xi D yi D 1; they output �1 (“true”); otherwise, they output
�1 with probability 1

2
�

1
4n

and C1 with the complementary probability. Calcula-
tions reveal that this protocol has constant cost and error probability at most 1

2
�

1
4n

;

whence R1=2�1=4n.DISJn/ D O.1/: In view of Proposition 3.2, we conclude that
disc.DISJn/ D ˝.1=n/: In particular, the discrepancy method cannot yield a lower
bound better than ˝.log n/ on the bounded-error communication complexity of
DISJn: Yet it is well-known [102, 176] that R1=3.DISJn/ D �.n/:

The generalized discrepancy method is a clever extension of the traditional
discrepancy method that avoids the difficulty just cited. To the best of our knowl-
edge, this idea originated in a paper by Klauck [114, Thm. 4] and was reformulated
more broadly by Razborov [177]. The development in [114] and [177] takes place
in the quantum model of communication. However, the basic mathematical tech-
nique is in no way restricted to the quantum model, and we will focus here on a
model-independent version of the generalized discrepancy method from [203]. Let
f WX � Y ! f�1;C1g be a given function whose communication complexity we
wish to estimate. The underlying communication model is irrelevant at this point.
Suppose we can find a function hWX � Y ! f�1;C1g and a distribution µ on
X � Y that satisfy the following two properties. First, the functions f and h are
well correlated under µ:

E
.x;y/�µ

Œf .x; y/h.x; y/� > ε; (3.3)
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where ε > 0 is a given constant. Second, no low-cost protocol ˘ in the given model
of communication can compute h to a substantial advantage under µ: Formally, if
˘ is a protocol in the given model with cost C bits (with output values˙1), then

E
.x;y/�µ

Œh.x; y/ E Œ˘.x; y/�� 6 2O.C /γ ; (3.4)

where γ D o.1/: The inner expectation in (3.4) is over the internal operation of the
protocol on the fixed input .x; y/:

If the conditions (3.3) and (3.4) hold, we claim that any protocol in the
given model that computes f with error at most ε=3 on each input must have cost
˝.logfε=γ g/: Indeed, let ˘ be a protocol with PŒ˘.x; y/ ¤ f .x; y/� 6 ε=3 for
all x; y: Then standard manipulations reveal:

E
µ

Œh.x; y/ E Œ˘.x; y/�� > E
µ

Œf .x; y/h.x; y/� � 2 �
ε
3

>
ε
3

;

where the last step uses (3.3). In view of (3.4), this shows that ˘ must have cost
˝.logfε=γ g/:

We attach the term generalized discrepancy method to this abstract frame-
work. Observe that original discrepancy method, Proposition 3.2, corresponds to
the case when f D h and the communication takes place in the two-party random-
ized model. The purpose of our abstract discussion was to expose the fundamen-
tal mathematical technique in question, which is independent of the communica-
tion model. Indeed, the communication model enters the picture only in the proof
of (3.4). It is here that the analysis must exploit the particularities of the model.
We will now specialize our discussion to the two-party model of bounded-error
communication. It will be convenient to state this result in matrix-analytic notation.

THEOREM 3.7 (Sherstov [203], implicit). Let F D ŒFxy�x2X; y2Y be a given sign
matrix, for some finite sets X and Y: Then for all sign matrices H D ŒHxy� and all
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probability matrices P D ŒPxy�;

2Rε.F / >
hF; H ı P i � 2ε

discP .H/
: (3.5)

In particular,

2Rε.F / > sup
Ψ¤0

hF;Ψ i � 2εkΨk1

kΨk
p
jX j jY j

: (3.6)

Note that one recovers Proposition 3.2, the ordinary discrepancy method, by
setting H D F in (3.5).

PROOF OF THEOREM 3.7. We first show that (3.6) follows from (3.5). By linearity,
one may assume that kΨk1 D 1; in which case Ψ D H ı P for some sign matrix
H and some probability matrix P: But then (3.6) is immediate from (3.5) by the
method of Proposition 3.4.

It remains to prove (3.5). Put c D Rε.F /: Theorem 3.1 immediately shows
that there exists a deterministic protocol ˘ WX � Y ! f�1;C1g with communica-
tion cost at most c and PP ŒFxy ¤ ˘.x; y/� 6 ε: Viewing the protocol as the sign
matrix ˘ D Œ˘.x; y/�x;y; we obtain

h˘; H ı P i > hF; H ı P i � 2ε:

On the other hand, the ordinary discrepancy method (Proposition 3.2) states that

h˘; H ı P i 6 2c discP .H/:

Comparing the last two inequalities completes the proof.

In subsequent chapters, we will see that Theorem 3.7 generalizes in a
straightforward way to quantum communication and multiparty communication.
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3.4 Communication complexity classes
Analogous to computational complexity, it is natural to define complexity classes
for communication. Throughout this section, the symbol ffng shall stand for a
family of functions f1; f2; : : : ; fn; : : : ; where fnW f0; 1gn � f0; 1gn ! f�1;C1g:

As one might expect by analogy with computational complexity, the classes
Pcc and BPPcc correspond to communication problems with efficient deterministic
and randomized protocols, respectively. Formally, a function family ffng is in Pcc

if and only if for some constant c > 1 and all n > c; one has D.fn/ 6 logc n:

Similarly, a function family ffng is in BPPcc if and only if for some constant c > 1

and all n > c; one has R1=3.fn/ 6 logc n:

The next two complexity classes that we consider correspond to small-bias
communication and are analogues of the class PP in computational complexity.
The first of these, PPcc; was originally defined in [23] as the class of communication
problems that have an efficient protocol with nonnegligible bias. More precisely, a
family ffng is in PPcc if and only if

R 1
2

�exp.� logc n/.fn/ 6 logc n

for some constant c > 1 and all n > c: For our purposes, it will be more convenient
to use an equivalent characterization of PPcc in terms of discrepancy:

THEOREM 3.8 (Klauck [116]). A family ffng is in PPcc if and only if

disc.fn/ > 2� logc n

for some constant c > 1 and all n > c:

The other class that corresponds to small-bias communication is UPPcc:

The definition of this class requires private-coin randomized protocols, in which
Alice and Bob each have an unlimited private source of random bits. This is in
contrast to the public-coin randomized protocols considered earlier, in which Alice
and Bob share an unlimited source of random bits. Unless specified otherwise,
all randomized protocols in this thesis are public-coin, and we will use the term
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“randomized protocol” as a shorthand for “public-coin randomized protocol.” Now,
a family ffng is in the class UPPcc if and only if for some constant c > 1 and
all n > c; there is a private-coin randomized protocol with cost at most logc n

that computes fn with error probability strictly less than 1=2 on every input. This
original definition from [23] admits an elegant matrix-analytic characterization:

THEOREM 3.9 (Paturi and Simon [167]). A family ffng is in the class UPPcc if and
only if

rk˙ Fn 6 2logc n

for some constant c > 1 and all n > c; where Fn D Œf .x; y/�x;y2f0;1gn :

The reader may wonder in what way this purely matrix-analytic definition is
related to communication. We will discuss this relationship in detail in Chapter 7,
dedicated to unbounded-error communication complexity. For now, we record the
containment

PPcc
� UPPcc: (3.7)

due to Babai et al. [23]. This containment will be formally proved in Section 10.5,
where we will also show that it is proper.

We now turn to the communication-complexity analogue of the polynomial
hierarchy PH: A function fnW f0; 1gn � f0; 1gn ! f�1;C1g is called a rectangle if
there exist subsets A; B � f0; 1gn such that

fn.x; y/ D �1 , x 2 A; y 2 B:

We call fn the complement of a rectangle if the negated function :fn D �fn is a
rectangle.

58



DEFINITION 3.10 (Babai et al. [23]).

(1) A family ffng is in …cc
0 if and only if each fn is a rectangle. A family ffng

is in †cc
0 if and only if f:fng is in …cc

0 :

(2) Fix an integer k D 1; 2; 3; 4; : : : : A family ffng is in †cc
k

if and only if for
some constant c > 1 and all n > c;

fn D

2logc n_
i1D1

2logc n^
i2D1

2logc n_
i3D1

� � �

2logc nK
ikD1

gi1;i2;:::;ik
n ;

where
J
D
W

.resp.,
J
D
V

/ for k odd .resp., even/I and each gi1;i2;:::;ik
n

is a rectangle .resp., the complement of a rectangle/ for k odd .resp., even/:

A family ffng is in …cc
k

if and only if f:fng is in †cc
k

:

(3) The polynomial hierarchy is given by PHcc
D
S

k †cc
k
D
S

k …cc
k

; where
k D 0; 1; 2; 3; : : : ranges over all constants.

(4) A family ffng is in PSPACEcc if and only if for some constant c > 1 and
all n > c;

fn D

2logc n_
i1D1

2logc n^
i2D1

2logc n_
i3D1

� � �

2logc n_
ikD1

gi1;i2;:::;ik
n ;

where k < logc n is odd and each gi1;i2;:::;ik
n is a rectangle.

Thus, the zeroth level (†cc
0 and …cc

0 ) of the polynomial hierarchy consists
of rectangles and complements of rectangles, the simplest functions in communi-
cation complexity. It is also straightforward to check that ffng 2 †cc

1 if and only if
N.fn/ 6 logc n for some constant c > 1 and all n > c: Likewise, ffng 2 …cc

1 if
and only if N.�fn/ 6 logc n for some constant c > 1 and all n > c: In summary,
the first level of the polynomial hierarchy corresponds to functions with efficient
nondeterministic and co-nondeterministic protocols. For this reason, one uses the
following equivalent notation: NPcc

D †cc
1 ; coNPcc

D …cc
1 :
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We will revisit the above complexity classes several times in this thesis.
In the meantime, we refer the interested reader to the original article by Babai et
al. [23] for further results.

3.5 Summary
For the reader’s convenience, we summarize in tabular form the communication-
related notation introduced in this chapter.

Symbol Meaning Pages
D.f / deterministic communication complexity of f 48
N.f / nondeterministic communication complexity of f 48
Rε.f / ε-error randomized communication complexity of f 48
D
µ
ε .f / ε-error µ-distributional communication complexity of f 50

discµ.f / discrepancy of f with respect to µ 49
disc.f / minimum discrepancy of f under any distribution 49
disc�.f / minimum discrepancy of f under a product distribution 49
Pcc sign matrices with low deterministic complexity 57
NPcc sign matrices with low nondeterministic complexity 59
coNPcc sign matrices with low co-nondeterministic complexity 59
BPPcc sign matrices with low randomized complexity 57
PPcc sign matrices with nonnegligible discrepancy 57
UPPcc sign matrices with low sign-rank 58
PHcc polynomial hierarchy in communication 59
†cc

k
; …cc

k
kth level of the polynomial hierarchy 59

PSPACEcc polynomial space in communication 59
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Chapter 4

Bounded-Error Communication and Discrepancy
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In this chapter, we address the challenge of proving communication lower
bounds in the randomized model, both for bounded-error protocols and for small-
bias protocols. Specifically, we develop a novel technique, the pattern matrix
method, that converts standard analytic properties of Boolean functions into lower
bounds for the associated communication problems. As an application, we estab-
lish the separations †cc

2 6� PPcc and …cc
2 6� PPcc in communication complexity

and solve an open problem in circuit complexity due to Krause and Pudlák [132].
Various other applications will be presented in later chapters as we further develop
our technique.

4.1 Introduction
Randomized protocols have been the focus of much research in communication
complexity since the introduction of the area by Yao three decades ago [223]. A va-
riety of techniques have been developed for proving communication lower bounds,
e.g., [102, 176, 82, 171, 56, 144, 77]. The main contribution of this chapter is
a strong new technique for lower bounds on communication complexity, the pat-
tern matrix method. The method converts analytic properties of Boolean functions
into lower bounds for the corresponding communication problems. The analytic
properties in question, discussed in Section 2.2, pertain to the approximation and
sign-representation of a given Boolean function by real polynomials of low degree,
which are among the oldest and most studied objects in theoretical computer sci-
ence. In other words, the pattern matrix method takes the wealth of results available
on the representations of Boolean functions by real polynomials and puts them at
the disposal of communication complexity.

As the method’s name suggests, the central concept in this chapter is what
we call a pattern matrix. We introduce the communication problem of computing

f .xjV /;

where f W f0; 1gt ! f�1;C1g is a fixed Boolean function; the string x 2 f0; 1gn

is Alice’s input (n is a multiple of t ); and the set V � f1; 2; : : : ; ng with jV j D t

is Bob’s input. In words, this communication problem corresponds to a situation
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when the function f depends on only t of the inputs x1; : : : ; xn: Alice knows the
values of all the inputs x1; : : : ; xn but does not know which t of them are relevant.
Bob, on the other hand, knows which t inputs are relevant but does not know their
values. For the purposes of this introduction, one can think of the .n; t; f /-pattern
matrix as the matrix Œf .xjV /�x;V ; where V ranges over the .n=t/t sets that have
exactly one element from each block of the following partition:

f1; : : : ; ng D

�
1; 2; : : : ;

n

t

�
[

�
n

t
C 1; : : : ;

2n

t

�
[ � � � [

�
.t � 1/n

t
C 1; : : : ; n

�
:

We defer the precise definition to Section 4.2. Observe that restricting V to be of
special form only makes our results stronger.

As a first result, we prove in Section 4.4 that the randomized communication
complexity of the .n; t; f /-pattern matrix F obeys

Rδ.F / >
1

2
degε.f / log

�n

t

�
� log

�
1

ε � 2δ

�
(4.1)

for any ε 2 Œ0; 1/ and any δ < ε=2: This equation gives lower bounds for both
bounded-error protocols and small-bias protocols. For example, it follows that

R1=3.F / > ˝
�

deg1=3.f / log
n

t

�
: (4.2)

This lower bound on bounded-error communication is tight up to a polynomial
factor, even for deterministic protocols. The lower bounds (4.1) and (4.2) are of
interest because pattern matrices arise as submatrices in natural communication
problems. For example, (4.2) shows that for every function f W f0; 1gt ! f�1;C1g;

the composition

F.x; y/ D f .: : : ; .xi;1yi;1 _ xi;2yi;2 _ xi;3yi;3 _ xi;4yi;4/; : : : /
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has bounded-error communication complexity ˝.deg1=3.f //: We will see a num-
ber of other such examples in later chapters.

In Section 4.5, we prove an additional lower bound for small-bias commu-
nication in terms of threshold weight W.f; d/: In particular, we are able to charac-
terize the discrepancy of every pattern matrix:

disc.F / 6 min
dD1;:::;t

max

(�
2t

W.f; d � 1/

�1=2

;

�
t

n

�d=2
)

;

which is essentially tight. In Section 4.6, we apply this characterization to the well-
studied class AC0

; the class of polynomial-size constant-depth circuits of AND,
OR, and NOT gates. We construct the first function f 2 AC0 with exponentially
small discrepancy, thereby establishing the separations

†cc
2 6� PPcc; …cc

2 6� PPcc

in communication complexity. These separations are best possible in that PPcc triv-
ially contains the first two levels of the polynomial hierarchy: †cc

0 ; †cc
1 ; …cc

0 ; …cc
1 :

Independently of the author, Buhrman et al. [53] exhibited another AC0 function
with exponentially small discrepancy, with a much different proof. An advantage
of our technique is that it works not only for AC0 but for an arbitrary base function
f with high threshold weight. In particular, we are able to give a simple alternate
proof of the result by Buhrman et al. [53] using pattern matrices.

As another application of our lower bounds for small-bias communication,
we prove in Section 4.7 that the AC0 function

f .x; y/ D

m̂

iD1

m2_
j D1

.xij ^ yij /

cannot be computed by a depth-2 majority circuit of size less than 2�.m/: This solves
an open problem due to Krause and Pudlák [132] and matches Allender’s classical
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result [11] that every function in AC0 can be efficiently computed by a depth-3
majority circuit.

An overview of the proofs. The setting in which to best describe our proofs
is the generalized discrepancy method, discussed in Section 3.3. Let F.x; y/ be
a Boolean function whose bounded-error communication complexity is of interest.
Recall that the generalized discrepancy method asks for a Boolean function H.x; y/

and a distribution µ on .x; y/-pairs such that:

(1) the functions F and H have correlation ˝.1/ under µ; and

(2) all low-cost protocols have negligible advantage in computing H under µ:

If such H and µ indeed exist, it follows that no low-cost protocol can compute F

to high accuracy (otherwise it would be a good predictor for the hard function H as
well). This method generalizes Yao’s original discrepancy method [137], in which
H D F: The advantage of the generalized version is that it makes it possible, in
theory, to prove lower bounds for functions such as DISJOINTNESS, to which the
traditional method does not apply.

The hard part is, of course, finding H and µ with the desired properties.
Except in rather restricted cases [114, Thm. 4], it was not known how to do it. As a
result, the generalized discrepancy method was of limited practical use prior to this
work. Here we overcome this difficulty, obtaining H and µ for a broad range of
problems, namely, the communication problems of computing f .xjV /:

Pattern matrices are a crucial ingredient of our solution. In Section 4.2, we
derive a closed-form expression for the singular values of a pattern matrix and their
multiplicities. This spectral information reduces our search from H and µ to a
much smaller and simpler object, namely, a function ψW f0; 1gt ! R with certain
properties. On the one hand, ψmust be well-correlated with the base function f: On
the other hand, ψ must be orthogonal to all low-degree polynomials. We establish
the existence of such ψ in Section 4.3 by passing to the linear programming dual
of the approximate degree of f: Although the approximate degree and its dual are
classical notions, we are not aware of any previous use of this duality to prove
communication lower bounds. For the results that feature threshold weight, we
combine the above program with the dual characterization of threshold weight.
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Looking ahead, we will see in the next chapter that these results apply to the
quantum model, regardless of prior entanglement. In that context, we will contrast
our approach with the work of Shi and Zhu [205], who independently used the dual
characterization of the approximate degree in a rather different way.

4.2 Pattern matrices and their spectrum
In this section we study the first component of our proof, a certain family of real
matrices that we introduce. Our goal here is to explicitly calculate their singular
values. As we shall see later, this provides a convenient means to generate hard
communication problems.

Let t and n be positive integers, where t < n and t j n: Partition Œn� into t

contiguous blocks, each with n=t elements:

Œn� D
n
1; 2; : : : ;

n

t

o
[

�
n

t
C 1; : : : ;

2n

t

�
[ � � � [

�
.t � 1/n

t
C 1; : : : ; n

�
:

Let V .n; t/ denote the family of subsets V � Œn� that have exactly one element in
each of these blocks (in particular, jV j D t ). Clearly, jV .n; t/j D .n=t/t : Recall
that for a bit string x 2 f0; 1gn and a set V 2 V .n; t/; the projection of x onto V is
given by

xjV D .xi1
; xi2

; : : : ; xit
/ 2 f0; 1gt ;

where i1 < i2 < � � � < it are the elements of V: We are ready for a formal definition
of our matrix family.

DEFINITION 4.1 (Sherstov [203]). ForφW f0; 1gt ! R; the .n; t;φ/-pattern matrix
is the real matrix A given by

A D
h
φ.xjV ˚ w/

i
x2f0;1gn; .V;w/2V .n;t/�f0;1gt

:
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In words, A is the matrix of size 2n by .n=t/t2t whose rows are indexed by strings
x 2 f0; 1gn; whose columns are indexed by pairs .V; w/ 2 V .n; t/ � f0; 1gt ; and
whose entries are given by Ax;.V;w/ D φ.xjV ˚ w/:

The logic behind the term “pattern matrix” is as follows: a mosaic arises
from repetitions of a pattern in the same way that A arises from applications of φ to
various subsets of the variables. Our approach to analyzing the singular values of a
pattern matrix A will be to represent it as the sum of simpler matrices and analyze
them instead. For this to work, we should be able to reconstruct the singular values
of A from those of the simpler matrices. Just when this can be done is the subject
of the following lemma.

LEMMA 4.2 (Sherstov [203]). Let A; B be real matrices with ABT D 0 and
ATB D 0: Then the nonzero singular values of A C B; counting multiplicities,
are σ1.A/; : : : ;σrk A.A/;σ1.B/; : : : ;σrk B.B/:

PROOF. The claim is trivial when A D 0 or B D 0; so assume otherwise. Since
the singular values of A C B are precisely the square roots of the eigenvalues of
.AC B/.AC B/T; it suffices to compute the spectrum of the latter matrix. Now,

.AC B/.AC B/T
D AAT

C BBT
C ABT”

D0

C BAT”
D0

D AAT
C BBT: (4.3)

Fix spectral decompositions

AAT
D

rk AX
iD1

σi.A/2uiu
T
i ; BBT

D

rk BX
j D1

σj .B/2vj vT
j :
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Then

rk AX
iD1

rk BX
j D1

σi.A/2σj .B/2
hui ; vj i

2
D

*
rk AX
iD1

σi.A/2uiu
T
i ;

rk BX
j D1

σj .B/2vj vT
j

+
D hAAT; BBT

i

D tr.AATBBT/

D tr.A � 0 � BT/

D 0: (4.4)

Since σi.A/σj .B/ > 0 for all i; j; it follows from (4.4) that hui ; vj i D 0 for all
i; j: Put differently, the vectors u1; : : : ; urk A; v1; : : : ; vrk B form an orthonormal set.
Recalling (4.3), we conclude that the spectral decomposition of .AC B/.AC B/T

is

rk AX
iD1

σi.A/2uiu
T
i C

rk BX
j D1

σj .B/2vj vT
j ;

and thus the nonzero eigenvalues of .AC B/.AC B/T are as claimed.

We are ready for the main result of this section.

THEOREM 4.3 (Sherstov [203]). Let φW f0; 1gt ! R be given. Let A be the
.n; t;φ/-pattern matrix. Then the nonzero singular values of A; counting multi-
plicities, are:

[
S W Oφ.S/¤0

(r
2nCt

�n

t

�t

� j Oφ.S/j

�
t

n

�jS j=2

; repeated
�n

t

�jS j

times

)
:
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In particular,

kAk D

r
2nCt

�n

t

�t

max
S�Œt�

(
j Oφ.S/j

�
t

n

�jS j=2
)

:

PROOF. For each S � Œt �; let AS be the .n; t;χS/-pattern matrix. Thus,

A D
X

S�Œt�

Oφ.S/AS : (4.5)

Fix arbitrary S; T � Œt � with S ¤ T: Then

ASAT
T D

24 X
V 2V .n;t/

X
w2f0;1gt

χS.xjV ˚ w/ χT .yjV ˚ w/

35
x;y

D

" X
V 2V .n;t/

χS.xjV / χT .yjV /
X

w2f0;1gt

χS.w/ χT .w/

�
D0

#
x;y

D 0: (4.6)

Similarly,

AT
SAT D

"
χS.w/ χT .w0/

X
x2f0;1gn

χS.xjV / χT .xjV 0/

Ÿ
D0

#
.V;w/;.V 0;w 0/

D 0: (4.7)

By (4.5)–(4.7) and Lemma 4.2, the nonzero singular values of A are the union of
the nonzero singular values of all Oφ.S/AS ; counting multiplicities. Therefore, the
proof will be complete once we show that the only nonzero singular value of AT

SAS
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is 2nCt.n=t/t�jS j; with multiplicity .n=t/jS j: It is convenient to write this matrix as
the Kronecker product

AT
SAS D ŒχS.w/χS.w0/�w;w 0 ˝

24 X
x2f0;1gn

χS.xjV / χS.xjV 0/

35
V;V 0

:

The first matrix in this factorization has rank 1 and entries˙1; which means that its
only nonzero singular value is 2t with multiplicity 1: The other matrix, call it M; is
permutation-similar to

2n

2664
J

J
: : :

J

3775 ;

where J is the all-ones square matrix of order .n=t/t�jS j: This means that the only
nonzero singular value of M is 2n.n=t/t�jS j with multiplicity .n=t/jS j: It follows
from elementary properties of the Kronecker product that the spectrum of AT

SAS is
as claimed.

4.3 Duals of approximation and sign-representation
We now develop the second ingredient of our proof, the dual characterizations of
the uniform approximation and sign-representation of Boolean functions by real
polynomials. As a starting point, we recall a classical result from approximation
theory due to Ioffe and Tikhomirov [97] on the duality of norms. A more recent
treatment is available in the textbook of DeVore and Lorentz [67], p. 61, Thm. 1.3.
We provide a short and elementary proof of this result in Euclidean space, which
will suffice for our purposes. We let RX stand for the linear space of real functions
on the set X:
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THEOREM 4.4 (Ioffe and Tikhomirov [97]). Let X be a finite set. Fix ˚ � RX and
a function f WX ! R: Then

min
φ2span.˚/

kf � φk∞ D max
ψ

(X
x2X

f .x/ψ.x/

)
; (4.8)

where the maximum is over all functions ψWX ! R such that

X
x2X

jψ.x/j 6 1

and, for each φ 2 ˚;

X
x2X

φ.x/ψ.x/ D 0:

PROOF. The theorem holds trivially when span.˚/ D f0g: Otherwise, let
φ1; : : : ;φk be a basis for span.˚/: Observe that the left member of (4.8) is the
optimum of the following linear program in the variables ε;α1; : : : ;αk:

minimize: ε

subject to:

ˇ̌̌̌
ˇf .x/ �

kX
iD1

αiφi.x/

ˇ̌̌̌
ˇ 6 ε for each x 2 X;

αi 2 R for each i;

ε > 0:
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Standard manipulations reveal the dual:

maximize:
X
x2X

ψxf .x/

subject to:
X
x2X

jψxj 6 1;X
x2X

ψxφi.x/ D 0 for each i;

ψx 2 R for each x 2 X:

Both programs are clearly feasible and thus have the same finite optimum. We have
already observed that the optimum of first program is the left-hand side of (4.8).
Since φ1; : : : ;φk form a basis for span.˚/; the optimum of the second program is
by definition the right-hand side of (4.8).

As a corollary to Theorem 4.4, we obtain a dual characterization of the
approximate degree.

THEOREM 4.5. Fix ε > 0: Let f W f0; 1gn ! R be given, d D degε.f / > 1: Then
there is a function ψW f0; 1gn ! R such that

Oψ.S/ D 0 .jS j < d/;X
x2f0;1gn

jψ.x/j D 1;

X
x2f0;1gn

ψ.x/f .x/ > ε:

PROOF. Set X D f0; 1gn and ˚ D fχS W jS j < dg � RX : Since degε.f / D d; we
conclude that

min
φ2span.˚/

kf � φk∞ > ε:
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In view of Theorem 4.4, we can take ψ to be any function for which the maximum
is achieved in (4.8).

We now state the dual characterization of the threshold degree, which is
better known as Gordan’s Transposition Theorem.

THEOREM 4.6 (Gordan [86]). Let f W f0; 1gn ! f�1;C1g be given. Then d <

deg˙.f / if and only if there is a distribution µ over f0; 1gn with

E
x�µ

Œf .x/χS.x/� D 0 .jS j 6 d/:

Theorem 4.6 has a short proof using linear programming duality, as ex-
plained in [194, �7.8] and [202, �2.2]. We close this section with one final dual
characterization, corresponding to sign-representation by integer polynomials.

THEOREM 4.7 (Freund [74], Hajnal et al. [88]). Fix a function f W f0; 1gn !

f�1;C1g and an integer d > deg˙.f /: Then for every distribution µ on f0; 1gn;

max
jS j6d

ˇ̌̌̌
E

x�µ
Œf .x/χS.x/�

ˇ̌̌̌
>

1

W.f; d/
: (4.9)

Furthermore, there exists a distribution µ such that

max
jS j6d

ˇ̌̌̌
E

x�µ
Œf .x/χS.x/�

ˇ̌̌̌
6

�
2n

W.f; d/

�1=2

: (4.10)

Inequalities (4.9) and (4.10) are originally due to Hajnal et al. [88] and Fre-
und [74], respectively. An integrated and simplified treatment of both results is
available in the work of Goldmann et al. [82], Lem. 4 and Thm. 10.
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4.4 Lower bounds for bounded-error communication
The previous two sections examined relevant dual representations and the spectrum
of pattern matrices. Having studied these notions in their pure and basic form, we
now apply our findings to communication complexity. Specifically, we establish the
pattern matrix method for bounded-error communication complexity, which gives
strong lower bounds for every pattern matrix generated by a Boolean function with
high approximate degree.

THEOREM 4.8 (Sherstov [203]). Let F be the .n; t; f /-pattern matrix, for a given
function f W f0; 1gt ! f�1;C1g: Then for every ε 2 Œ0; 1/ and every δ < ε=2;

Rδ.F / >
1

2
degε.f / log

�n

t

�
� log

�
1

ε � 2δ

�
: (4.11)

In particular,

R1=7.F / >
1

2
deg1=3.f / log

�n

t

�
� 5: (4.12)

PROOF. Since (4.11) immediately implies (4.12), we will focus on the former in
the remainder of the proof. Let d D degε.f / > 1: By Theorem 4.5, there is a
function ψW f0; 1gt ! R such that:

Oψ.S/ D 0 .jS j < d/; (4.13)X
´2f0;1gt

jψ.´/j D 1; (4.14)

X
´2f0;1gt

ψ.´/f .´/ > ε: (4.15)

Let Ψ be the .n; t; 2�n.n=t/�tψ/-pattern matrix. Then (4.14) and (4.15) show that

kΨk1 D 1; hF;Ψ i > ε: (4.16)
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Our last task is to calculate kΨk: By (4.14) and Proposition 2.1,

max
S�Œt�
j Oψ.S/j 6 2�t : (4.17)

Theorem 4.3 yields, in view of (4.13) and (4.17):

kΨk 6

�
t

n

�d=2 �
2nCt

�n

t

�t
��1=2

: (4.18)

Now (4.11) follows from (4.16), (4.18), and the generalized discrepancy method
(Theorem 3.7).

Theorem 4.8 gives lower bounds not only for bounded-error communication
but also for communication protocols with error probability 1

2
� o.1/: For example,

if a function f W f0; 1gt ! f�1;C1g requires a polynomial of degree d for ap-
proximation within 1 � o.1/; equation (4.11) gives a lower bound for small-bias
communication. We will complement and refine that estimate in the next section,
which is dedicated to small-bias communication.

Pattern matrices are of interest because they occur as submatrices in natural
communication problems. We will illustrate this point throughout this thesis. At
present, we record a corollary of Theorem 4.8 in terms of function composition.

COROLLARY 4.9 (Sherstov [203]). Let f W f0; 1gt ! f�1;C1g be given. Define
F W f0; 1g4t � f0; 1g4t ! f�1;C1g by

F.x; y/ D f .: : : ; .xi;1yi;1 _ xi;2yi;2 _ xi;3yi;3 _ xi;4yi;4/; : : : /:

Then

R1=7.F / >
1

2
deg1=3.f / � 5:
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PROOF. The .2t; t; f /-pattern matrix is as a submatrix of ŒF .x; y/�x;y2f0;1g4t :

Finally, we show that the lower bound in Theorem 4.8 for bounded-error
communication complexity is tight up to a polynomial factor, even for deterministic
protocols. The proof follows a well-known argument in the literature [51, 28] and
was pointed out to us by R. de Wolf [220].

PROPOSITION 4.10 (R. de Wolf [220], personal communication). Let F be the
.n; t; f /-pattern matrix, where f W f0; 1gt ! f�1;C1g is given. Then

D.F / 6 O
�

dt.f / log
n

t

�
6 O

�
deg1=3.f /6 log

n

t

�
: (4.19)

In particular, (4.12) is tight up to a polynomial factor.

PROOF. The second inequality in (4.19) follows by Theorem 2.9. Therefore, it
suffices to prove an upper bound of O.d log.n=t// on the deterministic communi-
cation complexity of F; where d D dt.f / is the decision tree complexity of f: The
needed deterministic protocol is well-known. Fix a depth-d decision tree for f: Let
.x; .V; w// be a given input. Alice and Bob start at the root of the decision tree,
labeled by some variable i 2 f1; : : : ; tg: By exchanging dlog.n=t/e C 2 bits, Alice
and Bob determine .xjV /i ˚ wi 2 f0; 1g and take the corresponding branch of the
tree. The process repeats until a leaf is reached, at which point both parties learn
f .xjV ˚ w/:

4.5 Lower bounds for small-bias communication
As we have already mentioned, Theorem 4.8 of the previous section can be used to
obtain lower bounds not only for bounded-error communication but also small-bias
communication. In the latter case, one first needs to show that the base function
f W f0; 1gt ! f�1;C1g cannot be approximated pointwise within 1�o.1/ by a real
polynomial of a given degree d: In this section, we derive a different lower bound
for small-bias communication, this time using the assumption that the threshold
weight W.f; d/ is high. We will see that this new lower bound is nearly optimal
and closely related to the lower bound in Theorem 4.8.
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THEOREM 4.11 (Sherstov [203]). Let F be the .n; t; f /-pattern matrix, for a given
function f W f0; 1gt ! f�1;C1g: Then for every integer d > 1 and real γ 2 .0; 1/;

R1=2�γ=2.F / >
1

2
min

�
d log

n

t
; log

W.f; d � 1/

2t

�
� log

1

γ
: (4.20)

In particular,

R1=2�γ=2.F / >
1

2
deg˙.f / log

�n

t

�
� log

1

γ
: (4.21)

PROOF. Letting d D deg˙.f / in (4.20) yields (4.21), since W.f; d � 1/ D ∞ in
that case. In the remainder of the proof, we focus on (4.20) alone.

We claim that there exists a distribution µ on f0; 1gt such that

max
jS j<d

ˇ̌̌̌
E

´�µ
Œf .´/χS.´/�

ˇ̌̌̌
6

�
2t

W.f; d � 1/

�1=2

: (4.22)

For d 6 deg˙.f /; the claim holds by Theorem 4.6 since W.f; d � 1/ D ∞ in that
case. For d > deg˙.f /; the claim holds by Theorem 4.7. Letting ψW f0; 1gt ! R
be given by ψ.´/ D f .´/µ.´/; we have from (4.22) that

j Oψ.S/j 6 2�t

�
2t

W.f; d � 1/

�1=2

.jS j < d/; (4.23)X
´2f0;1gt

jψ.´/j D 1; (4.24)

X
´2f0;1gt

ψ.´/f .´/ D 1: (4.25)
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Let Ψ be the .n; t; 2�n.n=t/�tψ/-pattern matrix. Then (4.24) and (4.25) show that

kΨk1 D 1; hF;Ψ i D 1: (4.26)

It remains to calculate kΨk: By (4.24) and Proposition 2.1,

max
S�Œt�
j Oψ.S/j 6 2�t : (4.27)

Theorem 4.3 yields, in view of (4.23) and (4.27):

kΨk 6 max

(�
t

n

�d=2

;

�
2t

W.f; d � 1/

�1=2
)�

2nCt
�n

t

�t
��1=2

: (4.28)

Now (4.20) follows from (4.26), (4.28), and the generalized discrepancy method
(Theorem 3.7).

Recall from Theorem 2.4 that the quantities E.f; d/ and W.f; d/ are related
for all f and d: In particular, the lower bounds for small-bias communication in
Theorems 4.8 and 4.11 are quite close, and either one can be approximately deduced
from the other. In deriving both results from scratch, as we did, our motivation was
to obtain the tightest bounds and to illustrate the pattern matrix method in different
contexts. We will now see that the lower bound in Theorem 4.11 is close to optimal.

THEOREM 4.12 (Sherstov [203]). Let F be the .n; t; f /-pattern matrix, for a given
function f W f0; 1gt ! f�1;C1g: Then for every integer d > deg˙.f /;

R1=2�γ=2.F / 6 d log
�n

t

�
C 3;

where γ D 1=W.f; d/:

PROOF. The communication protocol that we will describe is standard and has
been used in one form or another in several works, e.g., [167, 82, 198, 202]. Put
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W D W.f; d/ and fix a representation

f .´/ � sgn

 X
S�Œt�; jS j6d

λSχS.´/

!
;

where the integers λS satisfy
P
jλS j D W: On input .x; .V; w//; the protocol

proceeds as follows. Let i1 < i2 < � � � < it be the elements of V: Alice
and Bob use their shared randomness to pick a set S � Œt � with jS j 6 d; ac-
cording to the probability distribution jλS j=W: Next, Bob sends Alice the indices
fij W j 2 Sg as well as the bit χS.w/: With this information, Alice computes the
product sgn.λS/χS.xjV /χS.w/ D sgn.λS/χS.xjV ˚ w/ and announces the result
as the output of the protocol.

Assuming an optimal encoding of the messages, the communication cost of
this protocol is bounded by

�
log

�n

t

�d
�
C 2 6 d log

�n

t

�
C 3;

as desired. On each input x; V; w; the output of the protocol is a random variable
P.x; V; w/ 2 f�1;C1g that obeys

f .xjV ˚ w/ EŒP.x; V; w/� D f .xjV ˚ w/
X

jS j6d

jλS j

W
sgn.λS/χS.xjV ˚ w/

D
1

W

ˇ̌̌̌
ˇ̌ X
jS j6d

λSχS.xjV ˚ w/

ˇ̌̌̌
ˇ̌

>
1

W
;

which means that the protocol produces the correct answer with probability no
smaller than 1

2
C

1
2W

:
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We close this section by characterizing the discrepancy of pattern matrices
in terms of threshold weight.

THEOREM 4.13 (Sherstov [203]). Let F be the .n; t; f /-pattern matrix, for a given
function f W f0; 1gt ! f�1;C1g: Then for every integer d > 0;

disc.F / >
1

8W.f; d/

�
t

n

�d

(4.29)

and

disc.F /2 6 max

(
2t

W.f; d � 1/
;

�
t

n

�d
)

: (4.30)

In particular,

disc.F / 6

�
t

n

�deg˙.f /=2

: (4.31)

PROOF. The lower bound (4.29) follows from Theorem 4.12 and Proposition 3.2.
For the upper bound (4.30), construct the matrix Ψ as in the proof of Theorem 4.11.
Then (4.26) shows that Ψ D F ı P for a probability matrix P: As a result, (4.30)
follows from (4.28) and Proposition 3.4. Finally, (4.31) follows by taking d D

deg˙.f / in (4.30), since W.f; d � 1/ D ∞ in that case.

Threshold weight is typically easier to analyze than the approximate de-
gree. For completeness, however, we will now supplement Theorem 4.13 with an
alternate bound on the discrepancy of a pattern matrix in terms of the approximate
degree.
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THEOREM 4.14 (Sherstov [203]). Let F be the .n; t; f /-pattern matrix, for a given
function f W f0; 1gt ! f�1;C1g: Then for every γ > 0;

disc.F / 6 γ C
�

t

n

�deg1�γ .f /=2

:

PROOF. Let d D deg1�γ .f / > 1: Define ε D 1 � γ and construct the matrix Ψ as
in the proof of Theorem 4.8. Then (4.16) shows that Ψ D H ı P for a sign matrix
H and a probability matrix P: By (4.18) and Proposition 3.4,

discP .H/ 6

�
t

n

�d=2

: (4.32)

Moreover,

discP .F / 6 discP .H/C k.F �H/ ı P k1

D discP .H/C 1 � hF; H ı P i

6 discP .H/C γ ; (4.33)

where the last step follows because hF;Ψ i > ε D 1 � γ by (4.16). The proof is
complete in view of (4.32) and (4.33).

4.6 Separation of the polynomial hierarchy from PPcc

As an application of our results on small-bias communication, we will now examine
the discrepancy of AC0

; the class of polynomial-size constant-depth circuits with
AND, OR, NOT gates. We will prove the first exponentially small upper bound on
the discrepancy of a function in AC0

; thereby separating the polynomial hierarchy
in communication complexity from PPcc:
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Consider the function MPmW f0; 1g4m3

! f�1;C1g given by

MPm.x/ D

m̂

iD1

4m2_
j D1

xij :

This function was originally defined and studied by Minsky and Papert [153] in
their seminal monograph on perceptrons. We have:

THEOREM 4.15 (Sherstov [202, 203]). Let f .x; y/ D MPm.x ^ y/: Then

disc.f / D expf�˝.m/g:

PROOF. Put d D bm=2c: A well-known result of Minsky and Papert [153] states
that deg˙.MPd / > d: Since the .8d 3; 4d 3; MPd /-pattern matrix is a submatrix of
Œf .x; y/�x;y; the proof is complete in view of equation (4.31) of Theorem 4.13.

Theorem 4.15 gives a function in AC0 with exponentially small discrepancy.
Independently of the author, another such function was exhibited by Buhrman et
al. [53] with very different techniques. The key building block of that construction
is the ODD-MAX-BIT function OMBnW f0; 1gn ! f�1;C1g due to Beigel [32],
which is given by

OMBn.x/ D sgn

 
1C

nX
iD1

.�2/ixi

!
: (4.34)

Since

OMBn.x/ D
_
i odd

.xi ^ xiC1 ^ � � � ^ xn/;
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it is clear that OMBn belongs to the class AC0
: Buhrman et al. [53, �3.2] proved the

following result.

THEOREM 4.16 (Buhrman et al. [53]). Let f .x; y/ D OMBn.x ^ y/: Then

disc.f / D expf�˝.n1=3/g:

Using the results of this chapter, we are able to give a simple alternate proof
of this theorem.

PROOF (Sherstov [203]). Put m D bn=4c: A well-known result due to Beigel [32]
shows that W.OMBm; cm1=3/ > exp.cm1=3/ for some absolute constant c > 0:

Since the .2m; m; OMBm/-pattern matrix is a submatrix of Œf .x; y/�x;y; the proof
is complete by Theorem 4.13.

The work in this section establishes new separations for the communica-
tion complexity classes †cc

2 ; …cc
2 ; and PPcc; reviewed in detail in Section 3.4.

If fnW f0; 1gn � f0; 1gn ! f�1;C1g; n D 1; 2; 3; 4; : : : ; is an AC0 circuit fam-
ily of depth k with an OR gate at the top (resp., AND gate), then by definition
ffng 2 †cc

k�1
(resp., ffng 2 …cc

k�1
). In particular, the depth-3 circuit family ffng in

Theorem 4.15 is in …cc
2 ; whereas f:fng is in †cc

2 : Since the discrepancy of a func-
tion remains unchanged under negation, Theorem 4.15 has the following corollary.

COROLLARY 4.17. †cc
2 6� PPcc; …cc

2 6� PPcc:

By the same argument, Corollary 4.17 is immediate from Theorem 4.16.
This corollary is best possible in that PPcc trivially contains the zeroth and first
levels of the polynomial hierarchy:

PROPOSITION 4.18. Let f W f0; 1gn � f0; 1gn ! f�1;C1g be a function such that
f .x; y/ D

Ws
iD1 gi.x; y/; where g1; : : : ; gs 2 …cc

0 are each a rectangle. Then

disc.f / > ˝

�
1

s

�
: (4.35)
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In particular,

†cc
0 ; †cc

1 ; …cc
0 ; …cc

1 � PPcc:

PROOF. The containments †cc
0 ; †cc

1 � PPcc are immediate from (4.35). They in
turn imply the containments …cc

0 ; …cc
1 � PPcc since the discrepancy of a function

is invariant under negation. To prove (4.35), observe that

f D MAJORITY.g1; : : : ; gs; gsC1; : : : ; g2s�1/;

where we define gsC1 � gsC2 � � � � � g2s�1 � �1 (identically true). Consider
the randomized protocol in which the parties pick i 2 f1; 2; : : : ; 2s � 1g uniformly
at random, evaluate gi using constant communication, and output the result. This
protocol evaluates f correctly with probability at least 1

2
C˝

�
1
s

�
: Thus,

R1=2�˝.1=s/.f / D O.1/:

In view of Proposition 3.2, this completes the proof.

Proposition 4.18 also shows that the discrepancy of every AC0 circuit of
depth 2 is at least n�O.1/: In particular, the exponentially small upper bounds on
discrepancy, obtained in Theorems 4.15 and 4.16 for circuits of depth 3; are optimal
with respect to depth.

4.7 Separation of AC0 from majority circuits
A natural and important computational model is that of a polynomial-size cir-
cuit of majority gates. This model has been extensively studied for the past two
decades [153, 207, 88, 82, 159, 208, 209, 196]. Research has shown that majority
circuits of depth 2 and 3 already possess surprising computational power. Indeed,
it is a longstanding open problem [132] to exhibit a Boolean function that cannot
be computed by a depth-3 majority circuit of polynomial size. In particular, the
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arithmetic operations of powering, multiplication, and division on n-bit integer ar-
guments can all be computed by depth-3 majority circuits of polynomial size [209].
An even more striking example is the addition of n n-bit integers, which is com-
putable by a depth-2 majority circuit of polynomial size [209]. Depth-2 majority
circuits of polynomial size can also compute every symmetric function (such as
PARITY) and every DNF and CNF formula of polynomial size.

This goal of this section is to relate the computational power of majority
circuits to that of AC0

: A well-known result due to Allender [11] states that every
function in AC0 can be computed by a depth-3 majority circuit of quasipolynomial
size. It was an open problem to determine whether Allender’s simulation is optimal.
Specifically, Krause and Pudlák [132, �6] asked whether every function in AC0 can
be computed by a depth-2 majority circuit of quasipolynomial size. We solve this
problem:

THEOREM 4.19 (Sherstov [202, 203]). The function

f .x; y/ D

m̂

iD1

m2_
j D1

.xij ^ yij /

cannot be computed by a majority vote of fewer than expf˝.m/g linear threshold
gates.

In other words, Allender’s simulation is optimal in a strong sense. The lower
bound in Theorem 4.19 is an exponential improvement on previous work. The best
previous lower bound [88, 159] was quasipolynomial.

To prove Theorem 4.19, we first recall a well-known relationship between
the discrepancy of a function and its circuit complexity.

THEOREM 4.20 (Nisan [159]). Let f W f0; 1gn � f0; 1gn ! f�1;C1g be a given
function. Then f cannot be computed by a majority vote of fewer than

1

2n disc.f /α

85



linear threshold gates, for some absolute constant α > 0:

PROOF. Proposition 3.2 states that for every γ > 0;

R1=2�γ=2.f / > log
� γ

disc.f /

�
: (4.36)

On the other hand, fix a representation f � MAJ.h1; h2; : : : ; hs/; where each hi

is a linear threshold function. Nisan [159] proved that every linear threshold gate
hW f0; 1gn � f0; 1gn ! f�1;C1g satisfies Rε.h/ D O.log nC log 1

ε /: This gives a
nontrivial protocol for f; whereby the parties randomly pick i 2 f1; 2; : : : ; sg; eval-
uate hi correctly with probability 1� 1

4s
using O.log nC log s/ communication, and

output the result. Since this protocol computes f .x; y/ correctly with probability
at least

�
1
2
C

1
2s

�
�

1
4s
D

1
2
C

1
4s

on every input, we have

R1=2�1=4s.f / D O.log nC log s/: (4.37)

The theorem follows from (4.36) and (4.37).

We can now settle the main result of this section.

PROOF OF THEOREM 4.19. Immediate from Theorems 4.15 and 4.20.

An analogous argument reveals another AC0 function that requires a depth-
2 majority circuit of exponential size:

THEOREM 4.21. The function f W f0; 1gn � f0; 1gn ! f�1;C1g given by

f .x; y/ D sgn

 
1C

nX
iD1

.�2/ixiyi

!

cannot be computed by a majority vote of fewer than expf˝.n1=3/g linear threshold
gates.
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PROOF. Immediate from Theorems 4.16 and 4.20.

4.8 A combinatorial analysis of pattern matrices
In Sections 4.2–4.5, we used matrix-analytic methods to determine the discrepancy
and randomized communication complexity of pattern matrices. We revisit those
derivations here using simpler, combinatorial methods. The resulting bounds will
be weaker than before. We will see in Chapter 9, however, that this combinatorial
approach readily applies to the multiparty model of communication, where matrix-
analytic techniques do not work.

We will need the following technical observation.

PROPOSITION 4.22. Let ν.x/ be a probability distribution on f0; 1gr : Fix
i1; : : : ; ir 2 f1; 2; : : : ; rg: Then

X
x2f0;1gr

ν.xi1
; : : : ; xir

/ 6 2r�jfi1;:::;ir gj;

where jfi1; : : : ; irgj is the number of distinct integers among i1; : : : ; ir :

PROOF. Immediate from the fact that
P

x2f0;1gr ν.x1; : : : ; xr/ 6 1:

The main technical tool of this section is the following theorem.

THEOREM 4.23 (Sherstov [202, 195]). Fix a function hW f0; 1gt ! f�1;C1g and a
probability distribution µ on f0; 1gt : Let n be a given integer, t j n: Define matrices

H D Œh.xjV /�x;V ; P D 2�nCt
�n

t

��t

Œµ.xjV /�x;V ;

87



where the rows and columns are indexed as follows: x 2 f0; 1gn; V 2 V .n; t/: Let
d be an integer such that cµh.S/ D 0 whenever jS j < d: Then

discP .H/ 6

�
4et2

nd

�d=2

:

PROOF. Throughout the proof, the symbol U shall stand for the uniform distribu-
tion over the relevant domain. By Lemma 3.3,

discP .H/2 6 4t E
.S;T /�U

jΓ .S; T /j; (4.38)

where we let

Γ .S; T / D E
x�U

h
µ.xjS/µ.xjT /h.xjS/h.xjT /

i
:

To analyze this expression, we prove two key claims.

CLAIM 4.24. Assume that jS \ T j 6 d � 1: Then Γ .S; T / D 0:

PROOF. The claim is immediate from the fact that the Fourier spectrum of the
function µh is supported on characters of order d and higher. For completeness, we
include a more detailed derivation. By renumbering the variables, we may assume
that S D f1; 2; : : : ; tg: Then

Γ .S; T / D E
x�U

h
µ.x1; : : : ; xt/µ.xjT /h.x1; : : : ; xt/h.xjT /

i
D 2�n

X
x1;:::;xt

µ.x1; : : : ; xt/h.x1; : : : ; xt/
X

xtC1;:::;xn

µ.xjT /h.xjT /

�
:
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Since jS\T j 6 d�1; the underbraced expression is a real function of fewer than d

variables. The claim follows by the assumption on the Fourier spectrum of µh:

CLAIM 4.25. Assume that jS \ T j D k: Then jΓ .S; T /j 6 2k�2t :

PROOF. The claim is immediate from Proposition 4.22. For completeness, we in-
clude a more detailed explanation. By renumbering the variables, we may assume
that

S D f1; 2; : : : ; tg;

T D f1; 2; : : : ; kg [ ft C 1; t C 2; : : : ; t C .t � k/g:

We have:

jΓ .S; T /j 6 E
x�U

ˇ̌̌
µ.xjS/µ.xjT /h.xjS/h.xjT /

ˇ̌̌
D E

x1;:::;x2t�k

Œµ.x1; : : : ; xt/µ.x1; : : : ; xk; xtC1; : : : ; x2t�k/�

6 E
x1;:::;xt

Œµ.x1; : : : ; xt/�
�

D2�t

� max
x1;:::;xk

E
xtC1;:::;x2t�k

Œµ.x1; : : : ; xk; xtC1; : : : ; x2t�k/�
•

62�.t�k/

:

The bounds 2�t and 2�.t�k/ follow because µ is a probability distribution.

In view of Claims 4.24 and 4.25, inequality (4.38) simplifies to

discP .H/2 6
tX

kDd

2k PŒjS \ T j D k�:

Since

PŒjS \ T j D k� 6

 
t

k

!�
t

n

�k

6

�
et2

nk

�k

;
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and since the discrepancy cannot exceed 1; we conclude that

discP .H/2 6 min

(
1;

tX
kDd

�
2et2

nk

�k
)

6

�
4et2

nd

�d

:

This completes the proof of Theorem 4.23.

With Theorem 4.23 in hand, we now obtain a weaker form of Theorem 4.8
on the randomized communication complexity of pattern matrices.

THEOREM 4.26 (Sherstov [195, 203]). Let f W f0; 1gt ! f�1;C1g be a given func-
tion. Let n be a given integer, t j n: Put F D Œf .xjV /�x;V ; where the indices range
as follows: x 2 f0; 1gn; V 2 V .n; t/: Then for every parameter ε 2 Œ0; 1/ and
δ < ε=2;

Rδ.F / >
1

2
degε.f / log

�
n degε.f /

4et2

�
� log

�
1

ε � 2δ

�
: (4.39)

In particular,

R1=7.F / >
1

2
deg1=3.f / log

�
n deg1=3.f /

4et2

�
� 5: (4.40)

PROOF. Since (4.39) immediately implies (4.40), we will focus on the former in
the remainder of the proof. Let d D degε.f / > 1: By Theorem 4.5, there exists a
function hW f0; 1gt ! f�1;C1g and a probability distribution µ on f0; 1gt such that

cµh.S/ D 0; jS j < d; (4.41)X
´2f0;1gt

f .´/µ.´/h.´/ > ε: (4.42)
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Letting H D Œh.xjV /�x;V and P D 2�nCt
�

n
t

��t
Œµ.xjV /�x;V ; we obtain from (4.41)

and Theorem 4.23 that

discP .H/ 6

�
4et2

nd

�d=2

: (4.43)

At the same time, one sees from (4.42) that

hF; H ı P i > ε: (4.44)

The theorem now follows from (4.43), (4.44), and the generalized discrepancy
method (Theorem 3.7).

We close this section with a weaker form of Theorem 4.14 on the discrep-
ancy of a pattern matrix.

THEOREM 4.27 (Sherstov [202, 203]). Let f W f0; 1gt ! f�1;C1g be a given non-
constant function. Let n be a given integer, t j n: Put F D Œf .xjV /�x;V ; where the
indices range as follows: x 2 f0; 1gn; V 2 V .n; t/: Then for all γ > 0;

disc.F / 6 γ C

 
4et2

n deg1�γ .f /

!deg1�γ .f /=2

: (4.45)

In particular,

disc.F / 6

�
4et2

n deg˙.f /

�deg˙.f /=2

: (4.46)

PROOF. Letting γ & 0 in (4.45) yields (4.46). In the remainder of the proof, we
will focus on the former bound. Let d D deg1�γ .f / > 1: By Theorem 4.5, there
exists a function hW f0; 1gt ! f�1;C1g and a probability distribution µ on f0; 1gt
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such that

cµh.S/ D 0; jS j < d; (4.47)X
´2f0;1gt

f .´/µ.´/h.´/ > 1 � γ : (4.48)

Letting H D Œh.xjV /�x;V and P D 2�nCt
�

n
t

��t
Œµ.xjV /�x;V ; we obtain from (4.47)

and Theorem 4.23 that

discP .H/ 6

�
4et2

nd

�d=2

: (4.49)

Moreover,

discP .F / 6 discP .H/C k.F �H/ ı P k1

D discP .H/C 1 � hF ıH; P i

6 discP .H/C γ ; (4.50)

where the last step uses (4.48). The theorem follows from (4.49) and (4.50).
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Chapter 5

Quantum Communication
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A counterpart to the classical randomized model of communication is the
more powerful quantum model. We prove that the pattern matrix method of the pre-
vious chapter applies unchanged to this more difficult model, yielding a new source
of communication lower bounds. As an illustration of the quantum pattern matrix
method, we give a new and simple proof of Razborov’s breakthrough lower bounds
for disjointness and the other symmetric functions [177]. Finally, we contrast the
pattern matrix method with another duality-based technique, the block composition
method of Shi and Zhu [205].

5.1 Introduction
Quantum communication complexity, introduced by Yao [226], studies the amount
of quantum communication necessary to compute a Boolean function F whose ar-
guments are distributed among several parties. As before, one considers a function
F WX � Y ! f�1;C1g; where X and Y are some finite sets. One of the par-
ties, Alice, receives an input x 2 X; and the other party, Bob, receives an input
y 2 Y: Their objective is to evaluate F.x; y/: To this end, Alice and Bob can ex-
change messages back and forth through a shared communication channel. This
time, however, they can exchange quantum bits in addition to classical information.
Furthermore, Alice and Bob can take advantage of arbitrary prior entanglement,
in the sense of Einstein, Podolsky, and Rosen. The ε-error quantum communica-
tion complexity of F with prior entanglement, denoted Q�

ε .F /; is the least cost
of a protocol that computes F correctly with probability at least 1 � ε on every
input. We defer a more detailed and rigorous definition of the quantum model to
Section 5.2. Quantum communication is of course the counterpart of the classical
randomized model, studied in the previous chapter, in which the parties exchange
classical bits 0; 1 and additionally share an unlimited supply of unbiased random
bits.

Quantum computing has drawn considerable interest, both as a natural and
conceivably practical model and as a valuable source of new problems and insights
in physics, information theory, computer science, and other disciplines. The theory
of quantum communication complexity in particular has seen steady progress over
the past two decades [226, 16, 54, 117, 114, 177, 144], although quantum protocols
remain less understood than classical ones. Our main result is that the pattern matrix
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method, developed in the previous chapter for classical protocols, extends readily
to the quantum model, yielding a powerful new technique for communication lower
bounds. In particular, we prove in Section 5.4 that the .n; t; f /-pattern matrix F

obeys

Q�
1=7.F / >

1

4
deg1=3.f / log

�n

t

�
� 3; (5.1)

for every Boolean function f W f0; 1gt ! f�1;C1g: Analogous to the previous
chapter, we also obtain lower bounds for quantum protocols with small bias.

Recall from Proposition 4.10 that the lower bound (5.1) for bounded-error
communication is within a polynomial of optimal, even for classical determinis-
tic protocols. In particular, equation (5.1) exhibits a new class of communication
problems (namely, the family of all pattern matrices) with polynomially related
classical and quantum complexity. Prior to our work, the largest class of prob-
lems with polynomially related quantum and classical bounded-error complexities
was the class of symmetric functions [177], which is broadly subsumed by pattern
matrices. Exhibiting a polynomial relationship between the quantum and classical
bounded-error complexities for all functions F WX �Y ! f�1;C1g is a longstand-
ing open problem.

As illustration of the pattern matrix method in the quantum model, we revisit
the quantum communication complexity of symmetric functions. In this framework
Alice has a string x 2 f0; 1gn; Bob has a string y 2 f0; 1gn; and their objective is
to compute D.

P
xiyi/ for some predicate DW f0; 1; : : : ; ng ! f�1;C1g fixed in

advance. This setting encompasses several familiar functions, such as DISJOINT-
NESS (determining if x and y intersect) and INNER PRODUCT MODULO 2 (deter-
mining if x and y intersect in an odd number of positions). In a celebrated result,
Razborov [177] established optimal lower bounds on the quantum communication
complexity of every function of such form:

THEOREM (Razborov [177]). Let DW f0; 1; : : : ; ng ! f�1;C1g be a given predi-
cate. Put f .x; y/ D D.

P
xiyi/: Then

Q�
1=3.f / > ˝.

p
n`0.D/C `1.D//;
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where `0.D/ 2 f0; 1; : : : ; bn=2cg and `1.D/ 2 f0; 1; : : : ; dn=2eg are the smallest
integers such that D is constant in the range Œ`0.D/; n � `1.D/�:

Using the pattern matrix method, we give a new and simple proof of Razborov’s
result in Section 5.5. No alternate proof was available prior to our work, despite a
long line of research on this problem [16, 54, 117, 114, 96, 144].

In the concluding part of this chapter, we contrast the pattern matrix method
with a different technique for lower bounds on bounded-error communication, the
block composition method of Shi and Zhu [205]. Discovered independently of the
pattern matrix method, the technique of Shi and Zhu also exploits the dual charac-
terization of the approximate degree but in a rather different way. We offer a full
technical exposition of the block composition method in Section 5.6, followed by a
comparison of the two methods in Section 5.7.

5.2 Quantum model of communication
There are several equivalent ways to describe a quantum communication proto-
col. Our description closely follows Razborov [177]. Let A and B be complex
finite-dimensional Hilbert spaces. Let C be a Hilbert space of dimension 2; whose
orthonormal basis we denote by j0i; j1i: Consider the tensor product A ˝C ˝B;

which is itself a Hilbert space with an inner product inherited from A ; B; and C :

The state of a quantum system is a unit vector in A ˝ C ˝B; and conversely any
such unit vector corresponds to a distinct quantum state. The quantum system starts
in a given state and traverses a sequence of states, each obtained from the previ-
ous one via a unitary transformation chosen according to the protocol. Formally, a
quantum communication protocol is a finite sequence of unitary transformations

U1 ˝ IB; IA ˝ U2; U3 ˝ IB; IA ˝ U4; : : : ; U2k�1 ˝ IB; IA ˝ U2k;

where: IA and IB are the identity transformations in A and B; respectively;
U1; U3; : : : ; U2k�1 are unitary transformations in A ˝ C ; and U2; U4; : : : ; U2k are
unitary transformations in C ˝ B: The cost of the protocol is the length of this
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sequence, namely, 2k: On Alice’s input x 2 X and Bob’s input y 2 Y (where X; Y

are given finite sets), the computation proceeds as follows.

1. The quantum system starts out in an initial state Initial.x; y/:

2. Through successive applications of the above unitary transformations, the
system reaches the state

Final.x; y/

D .IA ˝ U2k/.U2k�1 ˝ IB/ � � � .IA ˝ U2/.U1 ˝ IB/ Initial.x; y/:

3. Let v denote the projection of Final.x; y/ onto A ˝ span.j1i/˝B: The out-
put of the protocol is 1 with probability hv; vi; and 0 with the complementary
probability 1 � hv; vi:

All that remains is to specify how the initial state Initial.x; y/ 2 A ˝C˝B

is constructed from x; y: It is here that the model with prior entanglement dif-
fers from the model without prior entanglement. In the model without prior en-
tanglement, A and B have orthonormal bases fjx; wi W x 2 X; w 2 W g and
fjy; wi W y 2 Y; w 2 W g; respectively, where W is a finite set corresponding to
the private workspace of each of the parties. The initial state is the pure state

Initial.x; y/ D jx; 0i j0i jy; 0i;

where 0 2 W is a certain fixed element. In the model with prior entanglement, the
spaces A and B have orthonormal bases fjx; w; ei W x 2 X; w 2 W; e 2 Eg and
fjy; w; ei W y 2 Y; w 2 W; e 2 Eg; respectively, where W is as before and E

is a finite set corresponding to the prior entanglement. The initial state is now the
entangled state

Initial.x; y/ D
1p
jEj

X
e2E

jx; 0; ei j0i jy; 0; ei:
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Apart from finite size, no assumptions are made about W or E: In particular, the
model with prior entanglement allows for an unlimited supply of entangled qubits.
This mirrors the unlimited supply of shared random bits in the classical public-coin
randomized model.

Let f WX � Y ! f�1;C1g be a given function. A quantum protocol ˘ is
said to compute f with error ε if

P
h
f .x; y/ D .�1/˘.x;y/

i
> 1 � ε

for all x; y; where the random variable ˘.x; y/ 2 f0; 1g is the output of the protocol
on input .x; y/: Let Qε.f / denote the least cost of a quantum protocol without
prior entanglement that computes f with error ε: Define Q�

ε .f / analogously for
protocols with prior entanglement. The precise choice of a constant 0 < ε < 1=2

affects Qε.f / and Q�
ε .f / by at most a constant factor, and thus the setting ε D 1=3

entails no loss of generality.

Let DW f0; 1; : : : ; ng ! f�1;C1g be a predicate. We associate with D the
function f W f0; 1gn � f0; 1gn ! f�1;C1g defined by f .x; y/ D D.

P
xiyi/: We

let Qε.D/ D Qε.f / and Q�
ε .D/ D Q�

ε .f /: More generally, by computing D in
the quantum model we mean computing the associated function f:

5.3 Quantum generalized discrepancy
The generalized discrepancy method, discussed in Section 3.3, readily extends to
the quantum model of communication. A starting point in our discussion is the
following fact due to Linial and Shraibman [144, Lem. 10], with closely analogous
statements established earlier by Yao [226], Kremer [134], and Razborov [177].

THEOREM 5.1 (Protocol factorization [226, 134, 177, 144]). Let X; Y be finite sets.
Let ˘ be a quantum protocol .with or without prior entanglement/ with cost C

qubits and input sets X and Y: Then

h
EŒ˘.x; y/�

i
x;y
D AB
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for some real matrices A; B with kAkF 6 2C
p
jX j and kBkF 6 2C

p
jY j:

Theorem 5.1 states that the matrix of acceptance probabilities of every low-
cost protocol ˘ has a nontrivial factorization. This transition from quantum pro-
tocols to matrix factorization is now a standard technique and has been used by
various authors in various contexts. The generalized discrepancy method was first
applied in the quantum setting by Klauck [114, Thm. 4] and reformulated more
broadly by Razborov [177]. The treatment in [177] being informal, we now pro-
pose a precise formulation of the quantum generalized discrepancy method and
supply a proof.

THEOREM 5.2 (Quantum generalized discrepancy). Let X; Y be finite sets and
f WX � Y ! f�1;C1g a given function. Let Ψ D ŒΨxy�x2X; y2Y be any real
matrix with kΨk1 D 1: Then for each ε > 0;

4Qε.f / > 4Q�
ε .f / >

hΨ ; F i � 2ε

3 kΨk
p
jX j jY j

;

where F D Œf .x; y/�x2X; y2Y :

PROOF. Fix any quantum protocol that computes f with error ε and cost C: Let
the random variable ˘.x; y/ 2 f0; 1g denote the output of the protocol on input
x 2 X; y 2 Y: Define the matrix of acceptance probabilities

˘ D
h

EŒ˘.x; y/�
i

x2X; y2Y
:

Then we can write F D .J � 2˘/C 2E; where J is the all-ones matrix and E is
some matrix with kEk∞ 6 ε: As a result,

hΨ ; J � 2˘i D hΨ ; F i � 2 hΨ ; Ei

> hΨ ; F i � 2ε kΨk1

D hΨ ; F i � 2ε: (5.2)
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On the other hand, Theorem 5.1 guarantees the existence of matrices A and B with
AB D ˘ and kAkF kBkF 6 4C

p
jX j jY j: Therefore,

hΨ ; J � 2˘i 6 kΨk kJ � 2˘k˙ by (2.5)

6 kΨk
�p
jX j jY j C 2 k˘k˙

�
since kJ k˙ D

p
jX j jY j

6 kΨk
�p
jX j jY j C 2 kAkF kBkF

�
by Prop. 2.13

6 kΨk
�
2 � 4C

C 1
�p
jX j jY j: (5.3)

The theorem follows by comparing (5.2) and (5.3).

5.4 Lower bounds using the pattern matrix method
Now that we have a quantum analogue of generalized discrepancy, we will see that
the pattern matrix method of Chapter 4 applies equally well to quantum communi-
cation. Indeed, the reader will note that our proofs are identical in the randomized
and quantum cases.

THEOREM 5.3 (Sherstov [203]). Let F be the .n; t; f /-pattern matrix, for a given
function f W f0; 1gt ! f�1;C1g: Then for every parameter ε 2 Œ0; 1/ and every
δ < ε=2;

Q�

δ.F / >
1

4
degε.f / log

�n

t

�
�

1

2
log

�
3

ε � 2δ

�
: (5.4)

In particular,

Q�
1=7.F / >

1

4
deg1=3.f / log

�n

t

�
� 3: (5.5)
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PROOF. Let d D degε.f / > 1 and define Ψ as in the proof of Theorem 4.8. Then
(5.4) follows from (4.16), (4.18), and the quantum generalized discrepancy method
(Theorem 5.2). Finally, (5.5) follows immediately from (5.4).

Recall from Proposition 4.10 that the lower bound (5.5) derived above for
bounded-error quantum communication complexity is tight up to a polynomial fac-
tor, even for classical deterministic protocols. Analogous to the classical case, we
have the following corollary of Theorem 5.3 on function composition.

COROLLARY 5.4 (Sherstov [203]). Let f W f0; 1gt ! f�1;C1g be given. Define
F W f0; 1g4t � f0; 1g4t ! f�1;C1g by

F.x; y/ D f .: : : ; .xi;1yi;1 _ xi;2yi;2 _ xi;3yi;3 _ xi;4yi;4/; : : : /:

Then

Q�
1=7.F / >

1

4
deg1=3.f / � 3:

PROOF. The .2t; t; f /-pattern matrix is as a submatrix of ŒF .x; y/�x;y2f0;1g4t :

Note that Theorem 5.3 yields lower bounds not only for bounded-error com-
munication but also small-bias communication. In the latter case, one first needs to
show that the base function f W f0; 1gt ! f�1;C1g cannot be approximated point-
wise within 1 � o.1/ by a real polynomial of a given degree d: In our next result,
we derive a different lower bound for small-bias quantum communication, this time
using the assumption that the threshold weight W.f; d/ is high.

THEOREM 5.5 (Sherstov [203]). Let F be the .n; t; f /-pattern matrix, where
f W f0; 1gt ! f�1;C1g is a given function. Then for every integer d > 1 and
real γ 2 .0; 1/;

Q�
1=2�γ=2.F / >

1

4
min

�
d log

n

t
; log

W.f; d � 1/

2t

�
�

1

2
log

3

γ
: (5.6)
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In particular,

Q�
1=2�γ=2.F / >

1

4
deg˙.f / log

�n

t

�
�

1

2
log

3

γ
: (5.7)

PROOF. Define the matrix Ψ as in the proof of Theorem 4.11. Then (5.6) follows
immediately from (4.26), (4.28), and the quantum generalized discrepancy method
(Theorem 5.2). Letting d D deg˙.f / in (5.6) yields (5.7), since W.f; d � 1/ D ∞

in that case.

Recall from Theorem 2.4 that the quantities E.f; d/ and W.f; d/ are related
for all f and d: In particular, the lower bounds for small-bias communication in
Theorems 5.3 and 5.5 are quite close, as their classical counterparts in Chapter 4.
In addition, these lower bounds on quantum small-bias communication are close to
optimal even for classical protocols, as we showed in Theorem 4.12.

5.5 Tight lower bounds for symmetric functions
As another illustration of the pattern matrix method, we now revisit Razborov’s
optimal lower bounds on the quantum communication complexity of symmetric
functions:

THEOREM 5.6 (Razborov [177]). Let DW f0; 1; : : : ; ng ! f�1;C1g be a given
predicate. Then

Q�
1=3.D/ > ˝.

p
n`0.D/C `1.D//;

where `0.D/ 2 f0; 1; : : : ; bn=2cg and `1.D/ 2 f0; 1; : : : ; dn=2eg are the smallest
integers such that D is constant in the range Œ`0.D/; n � `1.D/�:

Using the quantum version of the pattern matrix method, we give a new
and simple proof of this theorem. No alternate proof was available prior to this
work, despite the fact that this problem has drawn the attention of various re-
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searchers [16, 54, 117, 114, 96, 144]. Moreover, the next-best lower bounds for
general predicates were nowhere close to Theorem 5.6. To illustrate, consider the
disjointness predicate D; given by D.t/ D 1, t D 0: Theorem 5.6 shows that it
has communication complexity ˝.

p
n/; while the next-best lower bound [16, 54]

was only ˝.log n/:

We first solve the problem for all predicates D that change value close to 0:

Extension to the general case will require an additional step.

THEOREM 5.7. Let DW f0; 1; : : : ; ng ! f�1;C1g be a given predicate. Suppose
that D.`/ ¤ D.` � 1/ for some ` 6 1

8
n: Then

Q�
1=3.D/ > ˝.

p

n`/:

PROOF (Sherstov [203]). It suffices to show that Q�
1=7

.D/ > ˝.
p

n`/: Define

f W f0; 1gbn=4c ! f�1;C1g by f .´/ D D.j´j/: Then deg1=3.f / > ˝.
p

n`/ by
Theorem 2.5. Theorem 5.3 implies that

Q�
1=7.F / > ˝.

p

n`/;

where F is the .2bn=4c; bn=4c; f /-pattern matrix. Since F occurs as a submatrix
of ŒD.jx ^ yj/�x;y; the proof is complete.

The remainder of this section is a simple if tedious exercise in shifting and
padding. We note that Razborov’s proof concludes in a similar way (see [177],
beginning of Section 5).

THEOREM 5.8. Let DW f0; 1; : : : ; ng ! f�1;C1g be a given predicate. Suppose
that D.`/ ¤ D.` � 1/ for some ` > 1

8
n: Then

Q�
1=3.D/ > c.n � `/ (5.8)

for some absolute constant c > 0:
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PROOF (Sherstov [203]). Consider the communication problem of computing
D.jx ^ yj/ when the last k bits in x and y are fixed to 1: In other words, the
new problem is to compute Dk.jx0 ^ y 0j/; where x0; y 0 2 f0; 1gn�k and the predi-
cate DkW f0; 1; : : : ; n � kg ! f�1;C1g is given by Dk.i/ � D.k C i/: Since the
new problem is a restricted version of the original, we have

Q�
1=3.D/ > Q�

1=3.Dk/: (5.9)

We complete the proof by placing a lower bound on Q�
1=3

.Dk/ for

k D ` �
j α

1 � α
� .n � `/

k
;

where α D 1
8
: Note that k is an integer between 1 and ` (because ` > αn). The

equality k D ` occurs if and only if
�

α
1�α.n � `/

˘
D 0; in which case (5.8) holds

trivially for c suitably small. Thus, we can assume that 1 6 k 6 ` � 1; in which
case Dk.` � k/ ¤ Dk.` � k � 1/ and ` � k 6 α.n � k/: Therefore, Theorem 5.7
is applicable to Dk and yields:

Q�
1=3.Dk/ > C

p
.n � k/.` � k/; (5.10)

where C > 0 is an absolute constant. Calculations reveal:

n � k D

�
1

1 � α
� .n � `/

�
; ` � k D

j α
1 � α

� .n � `/
k

: (5.11)

The theorem is now immediate from (5.9)–(5.11).

Together, Theorems 5.7 and 5.8 give the main result of this section:
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THEOREM (Razborov [177]). Let DW f0; 1; : : : ; ng ! f�1;C1g: Then

Q�
1=3.D/ > ˝.

p
n`0.D/C `1.D//;

where `0.D/ 2 f0; 1; : : : ; bn=2cg and `1.D/ 2 f0; 1; : : : ; dn=2eg are the smallest
integers such that D is constant in the range Œ`0.D/; n � `1.D/�:

PROOF (Sherstov [203]). If `0.D/ ¤ 0; set ` D `0.D/ and note that D.`/ ¤
D.` � 1/ by definition. One of Theorems 5.7 and 5.8 must be applicable, and
therefore Q�

1=3
.D/ > minf˝.

p
n`/; ˝.n � `/g: Since ` 6 n=2; this simplifies to

Q�
1=3.D/ > ˝.

p
n`0.D//: (5.12)

If `1.D/ ¤ 0; set ` D n � `1.D/C 1 > n=2 and note that D.`/ ¤ D.` � 1/ as
before. By Theorem 5.8,

Q�
1=3.D/ > ˝.`1.D//: (5.13)

The theorem follows from (5.12) and (5.13).

5.6 Lower bounds using the block composition method
We now present a different technique for lower bounds on bounded-error classical
and quantum communication, the block composition method of Shi and Zhu [205].
Discovered independently of the author’s pattern matrix method [203], the tech-
nique of Shi and Zhu also exploits the dual characterization of the approximate
degree (Theorem 4.5) but in a rather different way. The pattern matrix method is
based on the idea of applying the same function to distinct sets of variables, whereas
the block composition method is based on the idea of hardness amplification by
composition.

Given functions f W f0; 1gn ! f�1;C1g and gW f0; 1gk � f0; 1gk ! f0; 1g;

let f ı gn denote the composition of f with n independent copies of g: More
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formally, the function f ı gnW f0; 1gnk � f0; 1gnk ! f�1;C1g is given by

.f ı gn/.x; y/ D f .: : : ; g.x.i/; y.i//; : : : /;

where x D .: : : ; x.i/; : : : / 2 f0; 1gnk and y D .: : : ; y.i/; : : : / 2 f0; 1gnk: The
block composition method gives a lower bound on the communication complexity
of f ı gn in terms of certain properties of f and g: The relevant property of f is
simply its approximate degree. The relevant property of g is its spectral discrep-
ancy, formalized next.

DEFINITION 5.9 (Shi and Zhu [205]). Given gW f0; 1gk�f0; 1gk ! f0; 1g; its spec-
tral discrepancy ρ.g/ is the least ρ > 0 for which there exist sets A; B � f0; 1gk

and a distribution µ on A � B such that





hµ.x; y/.�1/g.x;y/
i

x2A;y2B





 6
ρp
jAj jBj

; (5.14)





hµ.x; y/
i

x2A;y2B





 6
1C ρp
jAj jBj

; (5.15)

and

X
.x;y/2A�B

µ.x; y/.�1/g.x;y/
D 0: (5.16)

In view of (5.14) alone, the spectral discrepancy ρ.g/ is an upper bound
on the discrepancy disc.g/: The key additional requirement (5.15) is satisfied, for
example, by doubly stochastic matrices [95, �8.7]: if A D B and all row and
column sums in Œµ.x; y/�x2A;y2A are 1=jAj; then kŒµ.x; y/�x2A;y2Ak D 1=jAj:

As an illustration, consider the well-studied inner product function, given
by IPk.x; y/ D

Lk
iD1.xi ^ yi/:
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PROPOSITION 5.10 (Shi and Zhu [205]). The function IPk satisfies

ρ.IPk/ 6
1

p
2k � 1

:

PROOF (Shi and Zhu [205]). Take µ to be the uniform distribution over A � B;

where A D f0; 1gk n f0kg and B D f0; 1gk:

We are prepared to state the block composition method.

THEOREM 5.11 (Shi and Zhu [205]). Fix f W f0; 1gn ! f�1;C1g and gW f0; 1gk �

f0; 1gk ! f0; 1g: Put d D deg1=3.f / and ρ D ρ.g/: If ρ 6 d=.2en/; then

Q�
1=3.f ı gn/ D ˝.d/:

PROOF (adapted from [205]). Fix sets A; B � f0; 1gk and a distribution µ on
A � B with respect to which ρ D ρ.g/ is achieved. By Theorem 4.5, there ex-
ists ψW f0; 1gn ! R such that

Oψ.S/ D 0 for jS j < d; (5.17)X
´2f0;1gn

jψ.´/j D 1; (5.18)

X
´2f0;1gn

ψ.´/f .´/ >
1

3
: (5.19)

Define matrices

F D
h
f .: : : ; g.x.i/; y.i//; : : : /

i
x;y

;

Ψ D

"
2nψ.: : : ; g.x.i/; y.i//; : : : /

nY
iD1

µ.x.i/; y.i//

#
x;y

;
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where in both cases the row index x D .: : : ; x.i/; : : : / ranges over An and the
column index y D .: : : ; y.i/; : : : / ranges over Bn: In view of (5.16) and (5.19),

kΨk1 D 1; hF;Ψ i >
1

3
: (5.20)

We proceed to bound kΨk: Put

MS D

"Y
i2S

.�1/g.x.i/;y.i//
�

nY
iD1

µ.x.i/; y.i//

#
x;y

; S � f1; 2; : : : ; ng:

Then (5.14) and (5.15) imply, in view of the tensor structure of MS ; that

kMSk 6 jAj�n=2
jBj�n=2 ρjS j.1C ρ/n�jS j: (5.21)

On the other hand,

kΨk 6
X

S�Œn�

2n
j Oψ.S/j kMSk

D

X
jS j>d

2n
j Oψ.S/j kMSk by (5.17)

6
X

jS j>d

kMSk by (5.18) and Prop. 2.1

6 jAj�n=2
jBj�n=2

nX
iDd

 
n

i

!
ρi.1C ρ/n�i by (5.21).

Since ρ 6 d=.2en/; we further have

kΨk 6 jAj�n=2
jBj�n=2 2��.d/: (5.22)

108



In view of (5.20) and (5.22), the desired lower bound on Q�
1=3

.F / now follows by
the generalized discrepancy method (Theorem 5.2).

Proposition 5.10 and Theorem 5.11 have the following consequence:

THEOREM 5.12 (Shi and Zhu [205]). Fix a function f W f0; 1gn ! f�1;C1g: Then
for k > 2 log nC 5;

Q�
1=3.f ı IPn

k/ > ˝.deg1=3.f //:

For the disjointness function DISJk.x; y/ D
Wk

iD1.xi ^ yi/; Shi and Zhu
obtain ρ.DISJk/ D O.1=k/: Unlike Proposition 5.10, this fact requires a nontrivial
proof using Knuth’s calculation of the eigenvalues of certain combinatorial matri-
ces. In conjunction with Theorem 5.11, this upper bound on ρ.DISJk/ leads with
some work to the following result.

THEOREM 5.13 (Shi and Zhu [205]). Let DW f0; 1; : : : ; ng ! f�1;C1g be a given
predicate. Then

Q�
1=3.f / > ˝.n1=3`0.D/2=3

C `1.D//:

where `0.D/ 2 f0; 1; : : : ; bn=2cg and `1.D/ 2 f0; 1; : : : ; dn=2eg are the smallest
integers such that D is constant in the range Œ`0.D/; n � `1.D/�:

Thus, Shi and Zhu rederive a polynomially weaker form of Razborov’s quantum
lower bounds for symmetric predicates (Theorem 5.6).

109



5.7 Pattern matrix method vs. block composition method
Having described the two methods for quantum communication lower bounds, we
now compare them in detail. To restate the block composition method,

Q�
1=3.f ı gn/ > ˝.deg1=3.f //

provided that

ρ.g/ 6
deg1=3.f /

2en
:

The key player in this method is the quantity ρ.g/; which needs to be small. This
poses two complications. First, the function g will generally need to depend on
many variables, from k D �.log n/ to k D n�.1/; which weakens the final lower
bounds on communication (recall that ρ.g/ > 2�k always). For example, the lower
bounds obtained in [205] for symmetric functions are polynomially weaker than
Razborov’s optimal lower bounds (see Theorems 5.13 and 5.6, respectively).

A second complication, as Shi and Zhu note, is that “estimating the quan-
tity ρ.g/ is unfortunately difficult in general” [205]. For example, re-proving
Razborov’s lower bounds reduces to estimating ρ.g/ with g being the disjointness
function. Shi and Zhu accomplish this using Hahn matrices, an advanced tool that
is also the centerpiece of Razborov’s own proof (Razborov’s use of Hahn matrices
is somewhat more demanding).

These complications do not arise in the pattern matrix method. For example,
Theorem 5.3 shows that

Q�
1=3.f ı gn/ > ˝.deg1=3.f //
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for any function gW f0; 1gk � f0; 1gk ! f0; 1g such that the matrix Œg.x; y/�x;y

contains the following submatrix, up to permutations of rows and columns:

2641 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

375 : (5.23)

To illustrate, one can take

g.x; y/ D x1y1 _ x2y2 _ x3y3 _ x4y4;

or

g.x; y/ D x1y1y2 _ x1 y1y2 _ x2 y1 y2 _ x2 y1 y2:

(In particular, the pattern matrix method subsumes Theorem 5.12.) To summarize,
there is a simple function g on only k D 2 variables that works universally for all
f: This means no technical conditions to check, such as ρ.g/; and no blow-up in
the number of variables. As a result, in Section 5.5 of this thesis we were able to re-
prove Razborov’s optimal lower bounds exactly. Moreover, the technical machinery
involved was self-contained and disjoint from Razborov’s proof.

We have just seen that the pattern matrix method gives strong lower bounds
for many functions to which the block composition method does not apply. How-
ever, this does not settle the exact relationship between the scopes of applicability of
the two methods. Several natural questions arise. If a function gW f0; 1gk�f0; 1gk !

f0; 1g has spectral discrepancy ρ.g/ 6 1
2e ; does the matrix Œg.x; y/�x;y contain

(5.23) as a submatrix, up to permutations of rows and columns? An affirmative
answer would mean that the pattern matrix method has a strictly greater scope of
applicability; a negative answer would mean that the block composition method
works in some situations where the pattern matrix method does not apply. If the
answer is negative, what can be said for ρ.g/ D o.1/ or ρ.g/ D n��.1/?
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Another issue concerns multiparty communication. As we will discuss
in Chapter 9, the pattern matrix method extends readily to the multiparty model.
This extension depends on the fact that the rows of a pattern matrix are applications
of the same function to different subsets of the variables. In the general context of
block composition (Section 5.6), it is unclear how to carry out this extension.
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Chapter 6

Quantum vs. Classical Communication
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A longstanding goal in computational complexity is to prove that quantum
bounded-error protocols cannot be superpolynomially more efficient than their clas-
sical counterparts. Here, we prove this conjecture for a new class of communication
problems, broadly subsuming previous results. In particular, we prove a polynomial
relationship between the quantum and classical complexity of computing f .x ^ y/

and f .x_y/ on input x; y; where f is any given Boolean function. We prove anal-
ogous results for other function compositions. Finally, the explore the implications
of our techniques for the log-rank conjecture.

6.1 Introduction
A major open question in complexity theory and quantum computing is whether
quantum communication can be significantly more powerful than classical commu-
nication, i.e., whether a superpolynomial gap exists between the quantities Q�

1=3
.F /

and R1=3.F / for some function F WX � Y ! f�1;C1g: Exponential separations
between quantum and classical complexity are known in several alternate mod-
els of communication [16, 172, 50, 26, 78, 79, 110, 77, 76, 80], such as one-way
communication, simultaneous message passing, sampling, and computing a partial
function or relation. However, these results do not apply to the original question
about Q�

1=3
.F / and R1=3.F /; and the largest known separation between the two

quantities is the quadratic gap for the disjointness function [177, 3].

It is conjectured that Q�
1=3

.F / and R1=3.F / are polynomially related for all
F WX �Y ! f�1;C1g: Despite consistent research efforts, this conjecture appears
to be beyond the reach of the current techniques. An intermediate goal, proposed
by several authors [54, 116, 205] and still unattained, is to prove the conjecture for
the class of communication problems F W f0; 1gn � f0; 1gn ! f�1;C1g of the form

F.x; y/ D f .x ^ y/

for a given function f W f0; 1gn ! f�1;C1g: There has been encouraging progress
on this problem. To start with, Theorem 5.6 of Razborov solves this problem for the
special case of symmetric f; as noted in [205]. Second, recall from Proposition 4.10
and Theorem 5.3 that the bounded-error quantum communication complexity of ev-
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ery pattern matrix is within a polynomial of its classical deterministic complexity.
In particular, the pattern matrix method is a new source of communication prob-
lems with polynomially related classical and quantum complexities, including all
functions of the form

f .: : : ; .xi;1yi;1 _ xi;2yi;2 _ xi;3yi;3 _ xi;4yi;4/; : : : /;

for arbitrary f W f0; 1gn ! f�1;C1g: The block composition method of Shi and
Zhu, presented earlier in Section 5.6, is another important step toward quantum-
classical equivalence. In particular, Shi and Zhu [205] prove a polynomial relation-
ship between quantum and classical communication complexity for the family of
functions

f .: : : ; g.xi;1; yi;1; : : : ; xi;k; yi;k/; : : : /;

where f W f0; 1gn ! f�1;C1g is arbitrary and g is any gadget on 2k > ˝.log n/

variables that has certain pseudorandom analytic properties.

While the above results give further evidence that quantum and classical
communication complexities are polynomially related, it remains open to prove
this conjecture for all functions of the form F.x; y/ D f .x ^ y/: In this chapter,
we will solve a variant of the f .x ^ y/ question. Specifically, we will consider
the communication problem of computing, on input x; y 2 f0; 1gn; both of the
quantities f .x^y/ and f .x_y/: Our main result here is a polynomial relationship
between the quantum and classical complexity of any such problem, regardless of f:

We further show that the quantum complexity of any such problem is polynomially
related to its deterministic classical complexity D.F / and to the block sensitivity
bs.f /:

THEOREM 6.1 (Sherstov [201]). Let f W f0; 1gn ! f�1;C1g be arbitrary. Let F

denote the communication problem of computing, on input x; y 2 f0; 1gn; both of
the quantities f .x ^ y/ and f .x _ y/: Then

D.F / > R1=3.F / > Q�
1=3.F / > ˝.bs.f /1=4/ > ˝.D.F /1=12/:
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Theorem 6.1 and its generalizations in this chapter broadly subsume the
quantum-classical equivalence given by Razborov’s Theorem 5.6 and the pattern
matrix method. A corollary of Theorem 6.1 is that given any f; a polynomial rela-
tionship between the classical and quantum complexities is assured for at least one
of the communication problems f .x ^ y/; f .x _ y/: More precisely, we have:

COROLLARY 6.2 (Sherstov [201]). Let f W f0; 1gn ! f�1;C1g be arbitrary. Let
F1 and F2 denote the communication problems of computing f .x^y/ and f .x_y/;

respectively. Then either

D.F1/ > R1=3.F1/ > Q�
1=3.F1/ > ˝.bs.f /1=4/ > ˝.D.F1/1=12/ (6.1)

or

D.F2/ > R1=3.F2/ > Q�
1=3.F2/ > ˝.bs.f /1=4/ > ˝.D.F2/1=12/ (6.2)

or both.

PROOF. Theorem 6.1 immediately implies (6.1) if Q�
1=3

.F1/ > Q�
1=3

.F2/ and im-
plies (6.2) otherwise.

Apart from giving a polynomial relationship between the quantum and clas-
sical complexity of our functions, Theorem 6.1 shows that prior entanglement does
not affect their quantum complexity by more than a polynomial. It is an open prob-
lem [54] to prove a polynomial relationship for quantum communication complex-
ity with and without prior entanglement, up to an additive logarithmic term. The
current largest gap is an additive �.log n/ for the equality function.

In the concluding part of this chapter, we investigate applications of our
techniques to related problems. In Section 6.6, we prove that the communication
problem of computing f .x ^ y/ and f .x _ y/ satisfies another well-known con-
jecture, the log-rank conjecture of Lovász and Saks [147]. In Section 6.7, we note
generalizations of our results on quantum-classical equivalence and the log-rank
conjecture to arbitrary compositions of the form f .g; : : : ; g/:
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6.2 Overview of the proofs
We obtain Theorem 6.1 by bringing together analytic and combinatorial views
of the uniform approximation of Boolean functions. The analytic approach
and combinatorial approach have each found important applications in isolation,
e.g., [160, 28, 54, 177, 203, 205]. The key to our work is to find a way to combine
them.

On the analytic side, a key ingredient in our solution is the pattern matrix
method. Essential to the matrix-analytic version of this technique is a closed-form
expression for the singular values of every pattern matrix

Ψ D
h
ψ.xjV ˚ w/

i
x;.V;w/

; (6.3)

in terms of the Fourier spectrum of ψW f0; 1gn ! R: In particular, Theorem 4.3 crit-
ically exploits the fact that the rows of Ψ are applications of the same function ψ
to various subsets of the variables or their negations. In the communication prob-
lems of this chapter, this assumption is severely violated: as Bob’s input y ranges
over f0; 1gn; the induced functions fy.x/ D f .x ^ y/ may have nothing to do with
each other. This obstacle is fundamental: allowing a distinct function ψ in each
row of (6.3) disrupts the spectral structure of Ψ and makes it impossible to force the
desired spectral bounds.

We overcome this obstacle by exploiting the additional combinatorial struc-
ture of the base function f W f0; 1gn ! f�1;C1g; which never figured in the lower
bounds of the previous chapters. Specifically, we consider the sensitivity of f , the
block sensitivity of f; and their polynomial equivalence in our restricted setting,
as given by Kenyon and Kutin’s elegant Theorem 2.10. We use this combinatorial
structure to identify a large submatrix inside Œf .x ^ y/�x;y or Œf .x _ y/�x;y which,
albeit not directly representable in the form (6.3), has a certain dual matrix that can
be represented precisely in this way. Since the pattern matrix method relies only on
the spectral structure of this dual matrix, we are able to achieve our goal and place
a strong lower bound on the quantum communication complexity. The correspond-
ing upper bound for classical protocols has a short proof, analogous to de Wolf’s
Proposition 4.10.
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The program of Theorem 6.1 can be equivalently described in terms of poly-
nomials rather than functions. Let F be a subset of Boolean functions f0; 1gn !

f�1;C1g none of which can be approximated within ε in the `∞ norm by a poly-
nomial of degree less than d: For each f 2 F ; our work in Section 4.3 implies the
existence of a function ψW f0; 1gn ! R such that

P
f .x/ψ.x/ > ε

P
jψ.x/j and

ψ has zero Fourier mass on the characters of order less than d: This dual object,
the polynomial ψ; witnesses the fact that f has no low-degree approximant. Now,
there is no reason to believe that a single witness polynomial ψ can be found that
works for every function in F : A key technical challenge in this work is to show
that, under suitable combinatorial constraints that hold in our setting, the family F

will indeed have a common witness polynomial ψ: In conjunction with the pattern
matrix method, we are then able to solve the original problem.

Before reading on, the reader may wish to review the notation and results of
Section 2.3, where we discussed the combinatorial complexity measures of Boolean
functions. Given function f W f0; 1gn ! R and a string ´ 2 f0; 1gn; we will use the
symbol f´ to denote the function defined by f´.x/ � f .x ˚ ´/:

6.3 Combinatorial preliminaries
In this section, we develop the combinatorial component of our solution. A key
combinatorial fact in our analysis is the following consequence of Kenyon and
Kutin’s Theorem 2.10 on the sensitivity of Boolean functions.

LEMMA 6.3 (Sherstov [201]). Let f W f0; 1gn ! f�1;C1g be a given function.
Then there exists gW f0; 1gn ! f�1;C1g such that

s.g/ > α
p

bs.f / (6.4)

for some absolute constant α > 0 and

g.x/ � f .xi1
; xi2

; : : : ; xin
/ (6.5)

for some i1; i2; : : : ; in 2 f1; 2; : : : ; ng:
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PROOF. Put k D bs.f / and fix disjoint sets S1; : : : ; Sk � f1; 2; : : : ; ng such that
one has f .´˚eS1

/ D f .´˚eS2
/ D � � � D f .´˚eSk

/ ¤ f .´/ for some ´ 2 f0; 1gn:

Let I be the set of all indices i such the string ´jSi
features both zeroes and ones.

Put jI j D r: For convenience of notation, we will assume that I D f1; 2; : : : ; rg:

For i D 1; 2; : : : ; r; form the partition Si D Ai [ Bi ; where

Ai D fj 2 Si W j́ D 0g; Bi D fj 2 Si W j́ D 1g:

Now let

g.x/ D f

�
rM

iD1

xmin Ai
eAi
˚

rM
iD1

xmin Bi
eBi
˚

kM
iDrC1

xmin Si
eSi
˚

M
i…S1[���[Sk

xiei

�
:

Then (6.5) is immediate. By the properties of f; we have bs2.g/ > k; with the
blocks fmin A1; min B1g; : : : ; fmin Ar ; min Brg and fmin SrC1g; : : : ; fmin Skg be-
ing sensitive for g on input x D ´: As a result, Theorem 2.10 implies (6.4).

6.4 Analytic preliminaries
We now turn to the analytic component of our solution. The main results of this
section can all be derived by modifying Razborov’s proof of the quantum lower
bound for the disjointness function [177]. The alternate derivation presented here
seems to have some advantages, however, as we discuss in Remark 6.6. We start
by exhibiting a large family of Boolean functions whose inapproximability by low-
degree polynomials in the uniform norm can be witnessed by a single, common
dual object.

THEOREM 6.4 (Sherstov [201]). Let F denote the set of all functions f W f0; 1gn !

f�1;C1g such that f .e1/ D f .e2/ D � � � D f .en/ ¤ f .0/ D 1: Let δ > 0 be a
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suitable absolute constant. Then there exists a function ψW f0; 1gn ! R such that:

Oψ.S/ D 0; jS j < δ
p

n; (6.6)X
x2f0;1gn

jψ.x/j D 1; (6.7)

X
x2f0;1gn

ψ.x/f .x/ >
1

3
; f 2 F : (6.8)

PROOF. Let p be a univariate real polynomial that satisfies

p.0/ 2 Œ2=3; 4=3�;

p.1/ 2 Œ�4=3;�2=3�;

p.i/ 2 Œ�4=3; 4=3�; i D 2; 3; : : : ; n:

It follows from basic approximation theory (viz., the inequalities of A. A. Markov
and S. N. Bernstein) that any such polynomial p has degree at least δ

p
n for an

absolute constant δ > 0: See Nisan and Szegedy [160], pp. 308–309, for a short
derivation.

By the symmetrization argument (Proposition 2.2), there does not exist a
multivariate polynomial φ.x1; : : : ; xn/ of degree less than δ

p
n such that

φ.0/ 2 Œ2=3; 4=3�;

φ.ei/ 2 Œ�4=3;�2=3�; i D 1; 2; : : : ; n;

φ.x/ 2 Œ�4=3; 4=3�; x 2 f0; 1gn n f0; e1; e2; : : : ; eng:
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Linear programming duality now implies the existence of ψ that obeys (6.6), (6.7),
and additionally satisfies

ψ.0/ �

nX
iD1

ψ.ei/ �
X

x2f0;1gn

jxj>2

jψ.x/j >
1

3
;

which forces (6.8).

We are now in a position to prove our main technical criterion for high quan-
tum communication complexity. Our proof is based on the pattern matrix method
of Chapters 4 and 5. The novelty of the development below resides in allowing the
rows of the given Boolean matrix to derive from distinct Boolean functions, which
considerably disrupts the spectral structure. We are able to force the same quantita-
tive conclusion by using the fact that these Boolean functions, albeit distinct, share
the relevant dual object. By identifying a set S � f1; 2; : : : ; N g with its charac-
teristic vector 1S 2 f0; 1gN ; it will be convenient in what follows to view the set
family V .N; n/ from Section 4.2 as a family of strings in f0; 1gN :

THEOREM 6.5 (Sherstov [201]; cf. Razborov [177]). Let gW f0; 1gn ! f�1;C1g

be a function such that g.´˚ e1/ D g.´˚ e2/ D � � � D g.´˚ ek/ ¤ g.´/ for some
´ 2 f0; 1gn with ´1 D � � � D ´k D 0: Then the matrix G D Œg.x ^ y/�x;y2f0;1gn

satisfies

Q�
1=3.G/ > ˝.

p
k/:

REMARK 6.6. As formulated above, Theorem 6.5 can be readily derived by mod-
ifying Razborov’s proof of the ˝.

p
n/ quantum lower bound for the disjointness

function [177, �5.3]. The derivation that we are about to give appears to offer some
advantages. First, it is simpler and in particular does not require tools such as Hahn
matrices in [177]. Second, it generalizes to any family F of functions with a com-
mon dual polynomial, whereas the method in [177] is restricted to symmetrizable
families. Finally, the proof below generalizes to three and more communicating
parties, as we will see in Chapter 9.
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PROOF OF THEOREM 6.5. Without loss of generality, we assume that k is divisible
by 4: Let F denote the system of all functions f W f0; 1gk=4 ! f�1;C1g such that
f .e1/ D f .e2/ D � � � D f .ek=4/ ¤ f .0/ D 1: By Theorem 6.4, there exists
ψW f0; 1gk=4 ! R such that

Oψ.S/ D 0; jS j < δ
p

k; (6.9)X
x2f0;1gk=4

jψ.x/j D 1; (6.10)

X
x2f0;1gk=4

ψ.x/f .x/ >
1

3
; f 2 F ; (6.11)

whereδ > 0 is an absolute constant. Now, let Ψ be the .k=2; k=4; 2�3k=4ψ/-pattern
matrix. It follows from (6.10) that

kΨk1 D 1: (6.12)

By (6.10) and Proposition 2.1,

max
S
j Oψ.S/j 6 2�k=4: (6.13)

In view of (6.9) and (6.13), Theorem 4.3 yields

kΨk 6 2�δ
p

k=2 2�k=2: (6.14)

Now, put

M D g.´/

"
g

 
´˚

k=2M
iD1

fxiy2i�1e2i�1 ˚ xiy2ie2ig

!#
x2f0;1gk=2; y2V .k;k=4/

;
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where we identify V .k; k=4/ in the natural way with a subset of f0; 1gk: Observe
that

M D
h
fV;w.xjV ˚ w/

i
x2f0;1gk=2;.V;w/2V .k=2;k=4/�f0;1gk=4

for some functions fV;w 2 F : This representation makes it clear, in view of (6.11),
that

hΨ ; M i >
1

3
: (6.15)

By (6.12), (6.14), (6.15) and the generalized discrepancy method (Theorem 5.2),
we have Q�

1=3
.M/ > ˝.

p
k/: It remains to note that M is a submatrix of g.´/G;

so that Q�
1=3

.G/ > Q�
1=3

.M/:

We will also need the following equivalent formulation of Theorem 6.5, for
disjunctions instead of conjunctions.

COROLLARY 6.7. Let gW f0; 1gn ! f�1;C1g be a function such that g.´˚ e1/ D

g.´˚e2/ D � � � D g.´˚ek/ ¤ g.´/ for some ´ 2 f0; 1gn with ´1 D � � � D ´k D 1:

Then the matrix G D Œg.x _ y/�x;y2f0;1gn satisfies

Q�
1=3.G/ > ˝.

p
k/:

PROOF. Put Qg D g.1;:::;1/ and Q́ D .1; : : : ; 1/ ˚ ´: Then Q́1 D � � � D Q́k D 0 and
Qg. Q́ ˚ e1/ D Qg. Q́ ˚ e2/ D � � � D Qg. Q́ ˚ ek/ ¤ Qg. Q́/: By Theorem 6.5, the matrix
QG D Œ Qg.x ^ y/�x;y2f0;1gn satisfies Q�

1=3
. QG/ > ˝.

p
k/: It remains to note that G

and QG are identical up to a permutation of rows and columns.

We point out another simple corollary to Theorem 6.5.
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COROLLARY 6.8. Let f W f0; 1gn ! f�1;C1g be given. Then for some ´ 2 f0; 1gn;

the matrix F D Œf´.x ^ y/�x;y D Œf .: : : ; .xi ^ yi/˚ ´i ; : : : /�x;y obeys

Q�
1=3.F / D ˝.

p
bs.f //:

PROOF. Put k D bs.f / and fix ´ 2 f0; 1gn such that zbs.f´/ D k: By an argument
analogous to Lemma 6.3, one obtains a function gW f0; 1gn ! f�1;C1g such that
g.e1/ D g.e2/ D � � � D g.ek/ ¤ g.0/ and g.x/ � f´.ξ1; ξ2; : : : ; ξn/ for some
symbols ξ1; ξ2; : : : ; ξn 2 fx1; x2; : : : ; xn; 0; 1g: Then Theorem 6.5 implies that the
matrix G D Œg.x ^ y/�x;y2f0;1gn satisfies Q�

1=3
.G/ > ˝.

p
k/: On the other hand,

Q�
1=3

.F / > Q�
1=3

.G/ by construction.

6.5 Results on quantum-classical equivalence
We now combine the combinatorial and analytic development of the previous sec-
tions to obtain our main results. We start by proving relevant lower bounds against
quantum protocols.

THEOREM 6.9 (Sherstov [201]). Let f W f0; 1gn ! f�1;C1g be a given function.
Put F1 D Œf .x^y/�x;y and F2 D Œf .x_y/�x;y; where the row and column indices
range over f0; 1gn: Then

maxfQ�
1=3.F1/; Q�

1=3.F2/g D ˝.bs.f /1=4/:

PROOF. By Lemma 6.3, there exists a function gW f0; 1gn ! f�1;C1g such that

s.g/ > ˝.
p

bs.f // (6.16)

and

g.x/ � f .xi1
; xi2

; : : : ; xin
/ (6.17)
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for some i1; i2; : : : ; in 2 f1; 2; : : : ; ng: By renumbering the variables if necessary,
we see that at least one of the following statements must hold:

(1) g.´˚e1/ D g.´˚e2/ D � � � D g.´˚eds.g/=2e/ ¤ g.´/ for some ´ 2 f0; 1gn

with ´1 D ´2 D � � � D ´ds.g/=2e D 0;

(2) g.´˚e1/ D g.´˚e2/ D � � � D g.´˚eds.g/=2e/ ¤ g.´/ for some ´ 2 f0; 1gn

with ´1 D ´2 D � � � D ´ds.g/=2e D 1:

In the former case, Theorem 6.5 implies that the matrix G1 D Œg.x ^ y/�x;y2f0;1gn

satisfies Q�
1=3

.G1/ > ˝.
p

s.g//; whence Q�
1=3

.F1/ > Q�
1=3

.G1/ > ˝.bs.f /1=4/

in view of (6.16) and (6.17).

In the latter case, Corollary 6.7 implies that G2 D Œg.x _ y/�x;y2f0;1gn sat-
isfies Q�

1=3
.G2/ > ˝.

p
s.g//; whence Q�

1=3
.F2/ > Q�

1=3
.G2/ > ˝.bs.f /1=4/ in

view of (6.16) and (6.17).

Having obtained the desired lower bounds on quantum communication, we
now turn to classical protocols. The argument here is closely analogous to that of
Proposition 4.10.

THEOREM 6.10. Let f W f0; 1gn ! f�1;C1g be given. Put F1 D Œf .x^y/�x;y and
F2 D Œf .x _ y/�x;y; where the row and column indices range over f0; 1gn: Then

maxfD.F1/; D.F2/g 6 2 dt.f / 6 2 bs.f /3:

PROOF (adapted from [51, 28]). The second inequality follows immediately by
Theorem 2.8, so we will focus on the first. Fix an optimal-depth decision tree for f:

The protocol for F1 is as follows. On input x and y; Alice and Bob start at the top
node of the tree, read its label i; and exchange the two bits xi and yi : This allows
them to compute xi ^ yi and to determine which branch to take next. The process
repeats at the new node and so on, until the parties have reached a leaf node. Since
the longest root-to-leaf path has length dt.f /; the claim follows. The proof for F2

is entirely analogous.

Theorems 6.9 and 6.10 immediately imply our main result on quantum-
classical equivalence, stated above as Theorem 6.1.
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6.6 Applications to the log-rank conjecture
An important result due to Mehlhorn and Schmidt [152] shows that the rank of
a communication matrix gives a lower bound on its deterministic communication
complexity:

THEOREM 6.11 (Mehlhorn and Schmidt [152]). Let f WX � Y ! f�1;C1g be a
given function, where X; Y are finite sets. Put F D Œf .x; y/�x2X; y2Y : Then

D.f / > log2 rk F:

The well-known log-rank conjecture of Lovász and Saks [147, 148] states that the
lower bound in Theorem 6.11 is tight up to a polynomial factor, i.e., the deter-
ministic communication complexity D.F / of every sign matrix satisfies D.F / 6
.log2 rk F /c C c for some absolute constant c > 0: In this section we will prove
that, in addition to having polynomially related quantum and classical communica-
tion complexities, the problem of computing f .x ^ y/ and f .x _ y/ satisfies the
log-rank conjecture.

As an illustrative starting point, we first settle the log-rank conjecture for
every pattern matrix.

THEOREM 6.12 (Sherstov [203]). Let f W f0; 1gt ! f�1;C1g be a given function,
d D deg.f /: Let F be the .n; t; f /-pattern matrix. Then

rk F >
�n

t

�d

> expf˝.D.F /1=4/g: (6.18)

In particular, F satisfies the log-rank conjecture.

PROOF. Since Of .S/ ¤ 0 for some set S with jS j D d; Theorem 4.3 implies that F

has at least .n=t/d nonzero singular values. This settles the first inequality in (6.18).

Proposition 4.10 implies that D.F / 6 O.dt.f / log.n=t//: Since dt.f / 6
2 deg.f /4 by Theorem 2.6, we obtain the second inequality in (6.18).
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The remainder of this section is based on the following result of Buhrman
and de Wolf [54], who studied the special case of symmetric functions f in the
same context.

THEOREM 6.13 (Buhrman and de Wolf [54]). Let f W f0; 1gn ! R be given. Put
M D Œf .x ^ y/�x;y; where the row and column indices range over f0; 1gn: Then

rk M D mon.f /:

Our first observation is as follows.

LEMMA 6.14 (Sherstov [201]). Let f W f0; 1gn ! R be given, where f 6� 0 and
d D deg.f /: Then for some ´ 2 f0; 1gn;

mon.f´/ >

�
3

2

�d

:

PROOF. The proof is by induction on d: The base case d D 0 holds since f 6� 0:

Assume that the claim holds for all f of degree d � 1: By renumbering the vari-
ables if necessary, we have f .x/ D x1p.x2; : : : ; xn/ C q.x2; : : : ; xn/ for some
polynomial p of degree d � 1: The inductive assumption guarantees the exis-
tence of u 2 f0; 1gn�1 such that mon.pu/ > .3=2/d�1: Note that mon.f.0;u// D

mon.pu/Cmon.qu/ and mon.f.1;u// > mon.pu/C jmon.qu/ �mon.pu/j: Thus,

maxfmon.f.0;u//; mon.f.1;u//g >
3

2
mon.pu/ >

�
3

2

�d

:

We will also need the following technical lemma.
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LEMMA 6.15 (Sherstov [201]). Let f W f0; 1gn ! R be given. Fix an index i D

1; 2; : : : ; n: Define

Qf .x1; : : : ; xi�1; xiC1; : : : ; xn/ D f .x1; : : : ; xi�1; 0; xiC1; : : : ; xn/:

Then

maxfmon. Qf /; mon.fei
/g >

1

2
mon.f /:

PROOF. Write

f .x/ D xip.x1; : : : ; xi�1; xiC1; : : : ; xn/C Qf .x1; : : : ; xi�1; xiC1; : : : ; xn/:

Then mon. Qf /Cmon.fei
/ > mon. Qf /Cmon.p/Cjmon.p/�mon. Qf /j > mon.f /;

as desired.

At last, we arrive at the main result of this section.

THEOREM 6.16 (Sherstov [201]). Let f W f0; 1gn ! f�1;C1g be given, d D

deg.f /: Put F1 D Œf .x ^ y/�x;y and F2 D Œf .x _ y/�x;y; where the row and
column indices range over f0; 1gn: Then

maxfrk F1; rk F2g >

�
3

2
p

2

�d

> 1:06d : (6.19)

In particular, the communication problem of computing, on input x; y 2 f0; 1gn;

both of the quantities f .x ^ y/ and f .x _ y/; satisfies the log-rank conjecture.

PROOF. To see how the last statement follows from the lower bound (6.19), note
that maxfD.F1/; D.F2/g 6 2 dt.f / by Theorem 6.10 and recall that dt.f / 6
2 deg.f /4 by Theorem 2.6. In the remainder of the proof, we focus on (6.19) alone.
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We assume that d > 1; the claim being trivial otherwise. By renumbering
the variables if necessary, we may write

f .x/ D αx1x2 � � � xd C

X
S¤f1;:::;dg

αS

Y
i2S

xi ;

where α ¤ 0: Define g.x1; : : : ; xd / D f .x1; : : : ; xd ; 0; : : : ; 0/: Then g is a nonzero
polynomial of degree d; and Lemma 6.14 yields a vector ´ 2 f0; 1gd such that

mon.g´/ >

�
3

2

�d

:

By renumbering the variables if necessary, we may assume that ´ D 0t1d�t : We
complete the proof by analyzing the cases t 6 d=2 and t > d=2:

We will first consider the case when t 6 d=2: Let F stand for the set
whose elements are the identity function on f0; 1g and the constant-one func-
tion on f0; 1g: Lemma 6.15 provides functions φ1; : : : ;φt 2 F such that the
polynomial h.x1; : : : ; xd / D g1d .φ1.x1/; : : : ;φt.xt/; xtC1; : : : ; xd / features at
least 2�t mon.g´/ > .3=f2

p
2g/d monomials. By Theorem 6.13, the matrix

H D Œh.x ^ y/�x;y2f0;1gd has rank at least .3=f2
p

2g/d : Since H is a submatrix of
F2; the theorem holds in this case.

The case t > d=2 is entirely symmetric, with F1 playing the role of F2:

REMARK. By the results of Buhrman and de Wolf [54], Theorem 6.16 alone would
suffice to obtain a polynomial relationship between classical and quantum commu-
nication complexity in the exact model. However, for our main result we need a
polynomial relationship in the bounded-error model, which requires the full devel-
opment of Sections 6.3–6.5.

6.7 Generalizations for arbitrary composed functions
Up to this point, we have focused on the communication problem of computing
f .x ^ y/ and f .x _ y/: Here we point out that our results on quantum-classical
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equivalence and the log-rank conjecture immediately apply to a broader class
of communication problems. Specifically, we will consider compositions of the
form f .: : : ; gi.x

.i/; y.i//; : : : /; where one has a combining function f W f0; 1gn !

f�1;C1g that receives input from intermediate functions gi WXi � Yi ! f0; 1g;

i D 1; 2; : : : ; n: We will show that under natural assumptions on g1; : : : ; gn; this
composed function will have polynomially related quantum and classical bounded-
error complexities and will satisfy the log-rank conjecture.

THEOREM 6.17 (Sherstov [201]). Let f W f0; 1gn ! f�1;C1g be a given function.
Fix functions gi WXi � Yi ! f0; 1g; for i D 1; 2; : : : ; n: Assume that for each i; the
matrix Œgi.x

.i/; y.i//�x.i/2Xi ;y.i/2Yi
contains the following submatrices

�
1 0
0 0

�
;

�
0 1
1 1

�
; (6.20)

up to a permutation of rows and columns. Put F D Œf .: : : ; gi.x
.i/; y.i//; : : : /�:

Assume that for some constant α > 0;

Q�
1=3.gi/ > R1=3.gi/

α; i D 1; 2; : : : ; n: (6.21)

Then for some constant β D β.α/ > 0;

R1=3.F / > Q�
1=3.F / > R1=3.F /β:

PROOF. Without loss of generality, we may assume that f depends on all of its
n inputs (otherwise, disregard any irrelevant inputs from among g1; : : : ; gn in the
analysis below). In particular, we have

Q�
1=3.F / > Q�

1=3.gi/; i D 1; 2; : : : ; n: (6.22)
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Since each gi contains the two-variable functions AND and OR as subfunctions,
Corollary 6.8 shows that

Q�
1=3.F / > ˝.

p
bs.f //: (6.23)

Letting d D dt.f /; we claim that

R1=3.F / 6 O.d log d/ max
iD1;:::;n

fR1=3.gi/g: (6.24)

The proof of this bound is closely analogous to that of Theorem 6.10. Namely,
Alice and Bob evaluate a depth-d decision tree for f: When a tree node calls for
the i th variable, the parties run an optimal randomized protocol for gi with error
probability 1

3d
; which requires at most O.R1=3.gi/ log d/ bits of communication.

Since all root-to-leaf paths have length at most d; the final answer will be correct
with probability at least 2=3:

In view of Theorem 2.8, the sought polynomial relationship between
R1=3.F / and Q�

1=3
.F / follows from (6.21)–(6.24).

We now record an analogous result for the log-rank conjecture.

THEOREM 6.18 (Sherstov [201]). Let f W f0; 1gn ! f�1;C1g be a given function.
Fix functions gi WXi � Yi ! f0; 1g; for i D 1; 2; : : : ; n: Assume that for each
i; the matrix Œgi.x

.i/; y.i//�x.i/2Xi ;y.i/2Yi
contains (6.20) as submatrices, up to a

permutation of rows and columns. Put F D Œf .: : : ; gi.x
.i/; y.i//; : : : /�: Assume

that for some constant c > 0;

D.gi/ 6 .log2 rk Gi/
c; i D 1; 2; : : : ; n; (6.25)

where Gi D Œ.�1/gi .x.i/;y.i//�x.i/2Xi ;y.i/2Yi
: Then for some constant C D C.c/ > 0;

D.F / 6 .log2 rk F /C :
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In particular, F satisfies the log-rank conjecture.

PROOF. Without loss of generality, we may assume that f depends on all of its
n inputs (otherwise, disregard any irrelevant inputs from among g1; : : : ; gn in the
analysis below). In particular, we have

rk F > rk Gi ; i D 1; 2; : : : ; n: (6.26)

Since each gi contains the two-variable functions AND and OR as subfunctions,
Theorem 6.16 shows that

rk F >

�
3

2
p

2

�deg.f /

: (6.27)

Finally, we claim that

D.F / 6 2 dt.f / max
iD1;:::;n

fD.gi/g: (6.28)

The proof of this bound is closely analogous to that of Theorem 6.10. Namely,
Alice and Bob evaluate an optimal-depth decision tree for f: When a tree node calls
for the i th variable, the parties run an optimal deterministic protocol for gi :

In view of (6.25)–(6.28) and Theorem 2.6, the proof is complete.

The key property of g1; : : : ; gn that we have used in this section is that their
communication matrices contain (6.20) as submatrices. We close this section by
observing that this property almost always holds. More precisely, we show that
matrices that do not contain the submatrices (6.20) have a very restricted structure.

THEOREM 6.19 (Sherstov [201]). A matrix G 2 f0; 1gN �M does not contain

A D

�
0 1
1 1

�
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as a submatrix if and only if G D 0; G D J; or

G 0
�

266664
J1

J2

J3

0

0
:: :

Jk

377775 ; (6.29)

where: G 0 is the result of deleting any columns and rows in G that consist entirely
of zeroes; J; J1; J2; : : : ; Jk are all-1 matrices of appropriate dimensions; and �
denotes equality up to a permutation of rows and columns.

PROOF. The “if” part is clear. We will prove the other direction by induction on the
number of columns, M: The base case is trivial. For the inductive step, let G ¤ 0

be a given matrix. Let J1 be a maximal submatrix of G with all entries equal to 1:

Then

G �

�
J1 Z1

Z2 H

�

for suitable matrices Z1; Z2; and H; possibly empty. By the maximality of J1

and the fact that G does not contain A as a submatrix, it follows that either Z1 is
empty or Z1 D 0: Likewise for Z2: By the inductive hypothesis for H; the proof is
complete.

By reversing the roles of 0 and 1; one obtains from Theorem 6.19 an analo-
gous characterization of all matrices G D f0; 1gN �M that do not contain

�
1 0
0 0

�

as a submatrix.

REMARK 6.20. The communication complexity of a Boolean matrix remains un-
affected if one modifies it to retain only one copy of each column, removing any
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duplicates. An analogous statement holds for the rows. In light of Theorem 6.19,
this means that there are only four types of intermediate functions g for which our
composition results (Theorem 6.17 and 6.18) fail. These are the functions g with
matrix representations

I;

�
I

0

�
;

�
I
0

�
;

�
I 0

�
; (6.30)

and their negations, where I is the identity matrix. The reason that Theorems 6.17
and 6.18 fail for such g is that the underlying quantum lower bound in terms of
block sensitivity of the combining function f is no longer valid. For example, the
first matrix type, I; corresponds to letting g be the equality function. Now, the con-
junction of n equality functions is still an equality function, and its communication
complexity is O.1/ both in the randomized and quantum models [137], which is
much less than a hypothetical lower bound of ˝.

p
n/ that one would expect from

the block sensitivity of f D ANDn: The same O.1/ upper bound holds for a con-
junction of arbitrarily many functions g of the second, third, and fourth type.
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Chapter 7

Unbounded-Error Communication
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This chapter focuses on the unbounded-error model, a deep and fascinat-
ing model in communication complexity with applications to circuit complexity,
matrix analysis, and learning theory. Our main result here is a near-tight lower
bound on the unbounded-error communication complexity of every symmetric
function, i.e., every function of the form f .x; y/ D D.

P
xiyi/ for some predicate

DW f0; 1; : : : ; ng ! f�1;C1g: The pattern matrix method of the previous chapters
will continue to play an important role but will need to be complemented with other
results on random walks, matrix analysis, and approximation theory.

7.1 Introduction and statement of results
The unbounded-error model, due to Paturi and Simon [167], is a rich and elegant
model of communication. Fix a function f WX � Y ! f�1;C1g; where X and
Y are some finite sets. Alice receives an input x 2 X; Bob receives y 2 Y; and
their objective is to compute f .x; y/: To this end, they exchange classical bits 0 and
1 through a shared communication channel according to a protocol established in
advance. Alice and Bob each have an unlimited private source of random bits which
they can use in deciding what messages to send. Eventually, Bob concludes this
process by sending Alice a single bit, which is taken to be the output of their joint
computation. Let the random variable ˘.x; y/ 2 f�1;C1g denote the protocol
output when the parties receive inputs x 2 X and y 2 Y: Alice and Bob’s protocol
is said to compute f if

PŒ˘.x; y/ D f .x; y/� >
1

2

for all x 2 X; y 2 Y: The cost of a given protocol is the worst-case number of bits
exchanged on any input .x; y/: The unbounded-error communication complexity
of f; denoted U.f /; is the least cost of a protocol that computes f:

The unbounded-error model occupies a special place in communication
complexity because it is more powerful than any of the usual models, including de-
terministic, nondeterministic, bounded-error randomized, and bounded-error quan-
tum with or without entanglement. Furthermore, the unbounded-error model has
applications to matrix analysis, circuit complexity, and learning theory that the other
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models cannot have. We defer a thorough discussion of the unbounded-error model,
its applications, and quantitative comparisons with other models to Section 7.2.

Despite the many applications and intrinsic appeal of the unbounded-error
model, progress in understanding it has been slow and difficult. Indeed, we are
aware of only a few nontrivial results on this subject. Alon et al. [13] obtained
strong lower bounds for random functions. No nontrivial lower bounds were avail-
able for any explicit functions until the breakthrough work of Forster [70], who
proved strong lower bounds for the inner product function and, more generally, any
function whose communication matrix has low spectral norm. Several extensions
and refinements of Forster’s method were proposed in subsequent work [71, 73].

This chapter focuses on symmetric functions, i.e., functions f W f0; 1gn �

f0; 1gn ! f�1;C1g of the form f .x; y/ D D.
P

xiyi/ for a given predicate
DW f0; 1; : : : ; ng ! f�1;C1g: Symmetric functions are a well-studied class in
communication complexity, as the reader may recall from Chapter 5 and earlier
literature [102, 176, 177, 171, 27, 118]. Our main result is to settle the unbounded-
error communication complexity of every such function, to within logarithmic fac-
tors. Since the unbounded-error model more powerful than the other models, ear-
lier lower bounds for symmetric functions [102, 176, 177] are irrelevant to this
project. The only symmetric function whose unbounded-error complexity was
known prior to our work was inner product function IPn.x; y/ D

Ln
iD1.xi ^ yi/;

for which Forster [70] proved a tight lower bound of ˝.n/: The general result
that we prove is in terms of the degree deg.D/ of a given predicate D; de-
fined as the number of times D changes value in f0; 1; : : : ; ng: In other words,
deg.D/ D jfi W D.i/ ¤ D.i � 1/gj:

THEOREM 7.1 (Sherstov [204]). Let DW f0; 1; : : : ; ng ! f�1;C1g be given, k D

deg.D/: Define f .x; y/ D D.
P

xiyi/: Then

�.k= log5 n/ 6 U.f / 6 �.k log n/:

The upper bound in this result has a short and elementary demonstration.
This chapter is devoted, then, almost entirely to the proof of the lower bound. We
will give an intuitive overview of our proof in Section 7.3, after a more comprehen-
sive discussion of the unbounded-error model in Section 7.2.
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7.2 Unbounded-error model of communication
The unbounded-error model differs from the bounded-error randomized model of
Chapter 4 in two vital ways. First, a bounded-error protocol must provide the cor-
rect output with probability 1

2
C˝.1/ on each input, whereas the correctness prob-

ability of an unbounded-error protocol need merely exceed 1
2
; possibly by an expo-

nentially small amount. Second, the parties in the unbounded-error model no longer
have access to a shared source of random bits. Indeed, allowing such a source would
result in a trivial model, since every function f W f0; 1gn � f0; 1gn ! f�1;C1g can
be represented in the form

f .x; y/ � sgn

 X
S;T �f1;2;:::;ng

αS;TχS.x/χT .y/

!

for some reals αS;T and therefore admits a trivial public-coin protocol with cost
O.1/ and error probability strictly smaller than 1

2
: By contrast, a well-known result

due to Newman [157] shows that shared randomness has essentially no effect on
the bounded-error randomized complexity of any given function.

The unbounded-error model occupies a special place in the study of com-
munication because it is more powerful than any of the usual models, including de-
terministic, nondeterministic, bounded-error randomized, and bounded-error quan-
tum with or without entanglement. Frequently, the unbounded-error communica-
tion complexity of a function is exponentially smaller than its complexity in other
models. For example, the disjointness function DISJn.x; y/ D

Wn
iD1.xi ^ yi/ has

cost �.n/ in the bounded-error randomized model [102, 176], cost �.
p

n/ in the
bounded-error quantum model [177, 3], and cost �.log n/ in the unbounded-error
model (Proposition 7.23 below). Furthermore, in Chapter 10 we will construct func-
tions that have unbounded-error complexity O.log n/ but require ˝.

p
n/ commu-

nication in the randomized and quantum models to even achieve advantage 2�
p

n=5

over random guessing.

The additional power of the unbounded-error model has a consequence that
proving communication lower bounds in it requires richer mathematical machinery.
Furthermore, the resulting lower bounds will have applications that other commu-
nication models could not have. We will now examine several such applications.
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Sign-rank and rigidity. A compelling aspect of the unbounded-error model is
that it has an exact matrix-analytic formulation. Recall from Chapter 2 that the
sign-rank of a sign matrix F D ŒFij � is the least rank of a real matrix A D ŒAij �

with Fij Aij > 0 for all i; j: In other words, sign-rank measures the sensitivity of
the rank of F when its entries undergo sign-preserving perturbations. Sensitivity of
the rank is an important and deep subject in complexity theory. For example, much
work has focused on the closely related concept of matrix rigidity [103, 146]. Sur-
prisingly, the notion of sign-rank is equivalent to unbounded-error communication
complexity.

THEOREM 7.2 (Paturi and Simon [167, Thm. 2]). Fix finite sets X; Y and a function
f WX � Y ! f�1;C1g: Put F D Œf .x; y/�x2X;y2Y : Then

U.f / D log rk˙ F ˙ O.1/:

In words, the unbounded-error complexity of a function essentially equals the log-
arithm of the sign-rank of its communication matrix. Thus, unbounded-error com-
munication complexity embodies a fundamental question from matrix analysis,
with close ties to computational complexity.

Circuit complexity. Recall from Chapter 2 that a linear threshold gate g with
Boolean inputs x1; : : : ; xn is a function of the form g.x/ D sgn.

P
aixi � θ/ for

some fixed weights a1; : : : ; an;θ: Thus, a threshold gate generalizes the familiar
majority gate. A major unsolved problem [132] in computational complexity is to
exhibit a Boolean function that requires a depth-2 threshold circuit of superpolyno-
mial size. Communication complexity has been crucial to the progress on this prob-
lem. Via randomized communication complexity and discrepancy, many explicit
functions have been found that require majority-of-threshold circuits of exponential
size, as the reader may recall from Chapter 4 and earlier papers [88, 82, 159, 196].
This solves a special case of the general problem. The unbounded-error model,
or equivalently sign-rank, solves another case [71]: it supplies exponential lower
bounds against threshold-of-majority circuits, i.e., circuits with a linear threshold
gate at the top that receives inputs from majority gates. More precisely, Forster et
al. [71] proved the following result.
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THEOREM 7.3 (Forster et al. [71, Lem. 5]). Let f W f0; 1gn � f0; 1gn ! f�1;C1g

be a given function. Suppose that f .x; y/ � sgn.
Ps

iD1 λigi.x; y//; where each
gi is a linear threshold gate with integer weights bounded by W in absolute value.
Then for F D Œf .x; y/�x;y2f0;1gn;

s > ˝

�
rk˙ F

nW

�
:

Computational learning theory. We close this overview with an application of
sign-rank and unbounded-error communication complexity to computational learn-
ing theory, a subject treated in Part II of this thesis. Computational learning theory
seeks to approximately reconstruct an unknown function f W f0; 1gn ! f�1;C1g

based on its membership in a given set (the concept class) as well as its values on a
small sample of points on the hypercube f0; 1gn:

In a seminal paper [213], Valiant formulated the probably approximately
correct (PAC) model of learning, now a central model in computational learning
theory. Research has shown that PAC learning is surprisingly difficult. (By “PAC
learning,” we shall always mean PAC learning under arbitrary distributions.) In-
deed, the learning problem remains unsolved for such natural concept classes as
DNF formulas of polynomial size and intersections of two halfspaces, whereas
hardness results and lower bounds are abundant [105, 112, 127, 68, 128, 126].
One concept class for which efficient PAC learning algorithms are available is the
class of halfspaces, i.e., functions f WRn ! f�1;C1g representable as f .x/ �

sgn.
P

aixi � θ/ for some reals a1; : : : ; an;θ: Halfspaces constitute one of the
most studied classes in computational learning theory [186, 161, 153, 36] and a
major success story of the field. Indeed, a significant part of computational learning
theory attempts to learn rich concept classes by reducing them to halfspaces. The
reduction works as follows. Let C be a given concept class, i.e., a set of Boolean
functions f0; 1gn ! f�1;C1g: One seeks functions φ1; : : : ;φr W f0; 1gn ! R such
that every f 2 C has a representation

f .x/ � sgn.a1φ1.x/C � � � C arφr.x//
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for some reals a1; : : : ; ar : This process is technically described as embedding C

in halfspaces of dimension r: Once this is accomplished, C can be learned in time
polynomial in n and r by any halfspace-learning algorithm.

For this approach to be practical, the number r of real functions needs to be
reasonable (ideally, polynomial in n). It is thus of interest to determine what natural
concept classes can be embedded in halfspaces of low dimension [35, 126]. The
smallest dimension of such a representation is called the sign-rank of a given class.
Formally, the sign-rank rk˙ C of a given class C of functions f0; 1gn ! f�1;C1g

is the least r for which there exist real functions φ1; : : : ;φr W f0; 1gn ! R such that
every f 2 C is expressible as f .x/ � sgn.

P
aiφi.x// for some reals a1; : : : ; ar :

To relate this discussion to the sign-rank of matrices, let MC D Œf .x/�f 2C ; x2f0;1gn

be the characteristic matrix of C : A moment’s reflection reveals that

rk˙ C D rk˙ MC ;

i.e., the sign-rank of a concept class is precisely the sign-rank of its characteristic
matrix.

In summary, the study of sign-rank, or equivalently unbounded-error com-
munication complexity, yields nontrivial PAC learning algorithms. In particular,
the current fastest algorithm for learning polynomial-size DNF formulas, due to
Klivans and Servedio [122], was obtained precisely by placing an upper bound of
2

QO.n1=3/ on the sign-rank of that concept class, with the functions φi corresponding
to the monomials of degree up to QO.n1=3/:

7.3 Overview of the proof
Our proof of Theorem 7.1 consists of two independent parts. First, we reduce the
original problem to analyzing what we call dense predicates. We attach this term
to the predicates DW f0; 1; : : : ; ng ! f�1;C1g that change value frequently and at
roughly regular intervals. Dense predicates are highly structured and amenable to
direct analysis, unlike general predicates. With this reduction in hand, we complete
the proof by solving the problem for every dense predicate. We now describe the
two technical components in greater detail.
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Let DW f0; 1; : : : ; ng ! f�1;C1g be a given predicate that is not dense.
Any communication protocol that computes D can clearly compute the restriction
of D to a given subinterval fi; i C 1; : : : ; j g � f0; 1; : : : ; ng: Now, let D denote the
set of all restrictions of D to subintervals of a given length. Using a probabilistic
argument, we show that a dense predicate arises as the XOR of a small number
T of predicates from D ; where T depends on the degree of D: As a result, if the
original predicate D has unbounded-error complexity� deg.D/; then some dense
predicate will have disproportionately small unbounded-error complexity. This is
the desired reduction. The technical challenge here is to show that a dense predicate
can be obtained as the XOR of a small number of predicates from D : To this end, we
model the probabilistic argument as a random walk on Zn

2 and place a strong upper
bound on its mixing time. Our analysis uses a known bound, due to Razborov [174],
on the rate of convergence in terms of the probability of a basis for Zn

2:

It remains to describe our solution for dense predicates. Using Chebyshev
polynomials and the Markov-Bernstein inequalities, Paturi [165] determined the
least degree of a polynomial that approximates any given Boolean predicate on
f0; 1; : : : ; ng pointwise to within 1=3: A starting point in our analysis of dense
predicates is a related approximation problem, in which the nodes are no longer
f0; 1; : : : ; ng but are some arbitrary reals fξ1; ξ2; : : : ; ξng � Œ0; n�: Provided that the
nodes are not too clumped together, we are able to prove strong lower bounds on the
degree for a relevant class of approximation problems f W fξ1; ξ2; : : : ; ξng ! f0; 1g:

Paturi’s proof technique does not apply in this more general setting, and we give a
direct analysis using fundamentals of approximation theory.

The crucial next step is to show that computation of dense predicates
corresponds to the approximation problem just described, where the real nodes
ξ1; ξ2; : : : ; ξn are allowed to form clusters but must still cover much of the inter-
val Œ0; n�: Linear-programming duality now tells us that, in a well-defined technical
sense, a dense predicate behaves much like the parity function with respect to a
smooth distribution on the inputs. This enables us to bound the spectral norm of
relevant matrices using the pattern matrix method of Chapter 4. In a final step, we
invoke Forster’s generalized theorem [71] to obtain our main result.
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7.4 Technical preliminaries
At several places in this chapter, it will be important to distinguish between addition
over the reals and addition over GF.2/: To avoid any confusion, we reserve the
operator C for the former and ˚ for the latter. We will need the following fact
about random walks on Zn

2:

PROPOSITION 7.4 (Folklore). For an integer T > 1; let b1; b2; : : : ; bT 2 f0; 1g be
independent random variables, each taking on 1 with probability p: Then

E
h
b1 ˚ b2 ˚ � � � ˚ bT

i
D

1

2
�

1

2
.1 � 2p/T :

PROOF. Straightforward by induction on T:

Fix a predicate DW f0; 1; : : : ; ng ! f�1;C1g: We say that a value change
occurs at index t 2 f1; 2; : : : ; ng if D.t/ ¤ D.t � 1/: The degree of D is de-
fined by deg.D/ D jft W D.t/ ¤ D.t � 1/gj: To illustrate, the familiar predicate
PARITYn.t/ D .�1/t has degree n; whereas a constant predicate has degree 0:

It is clear that deg.D/ is the least degree of a real univariate polynomial p such
that D.t/ D sgn p.t/; t D 0; 1; : : : ; n; hence the term degree. Given two pred-
icates D1; D2W f0; 1; : : : ; ng ! f�1;C1g; recall that their XOR is the predicate
D1 ˚D2W f0; 1; : : : ; ng ! f�1;C1g defined by .D1 ˚D2/.t/ D D1.t/D2.t/:

In a breakthrough result, Forster [70] proved the first strong lower bound in
the unbounded-error model for the inner product function and more generally any
function whose communication matrix has low spectral norm. In view of Theo-
rem 7.2, Forster’s result admits equivalent formulations in terms of sign-rank and
unbounded-error communication complexity.

THEOREM 7.5 (Forster [70]). Let X; Y be finite sets and M D ŒMxy�x2X;y2Y a
sign matrix. Then

rk˙ A >

p
jX j jY j

kMk
:
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In particular, the inner product matrix H D Œ.�1/
P

xi yi �x;y2f0;1gn satisfies

U.H/ D log rk˙ H ˙O.1/ >
1

2
n �O.1/:

Forster’s proof generalizes to yield the following result, which serves as a
crucial starting point for our work.

THEOREM 7.6 (Forster et al. [71, Thm. 3]). Let X; Y be finite sets and M D

ŒMxy�x2X;y2Y a real matrix without zero entries. Then

rk˙ M >

p
jX j jY j

kMk
min
x;y
jMxyj:

Given functions f; gWX � Y ! f�1;C1g; recall that their XOR is the
function f ˚ gWX � Y ! f�1;C1g defined by .f ˚ g/.x; y/ D f .x; y/g.x; y/:

We have:

PROPOSITION 7.7 (Folklore). Let f; gWX � Y ! f�1;C1g be arbitrary. Then

U.f ˚ g/ 6 U.f /C U.g/:

PROOF. Alice and Bob can run a separate protocol for f and g and output the XOR
of the two answers. It is straightforward to verify that this strategy is correct with
probability greater than 1=2:

In this chapter, we will be primarily interested in the communication com-
plexity of predicates DW f0; 1; : : : ; ng ! f�1;C1g: Specifically, we define U.D/

to be the unbounded-error communication complexity of the function f W f0; 1gn �

f0; 1gn ! f�1;C1g given by f .x; y/ D D.
P

xiyi/: In specifying matrices, we
will use the symbol � for entries whose values are irrelevant, as in the proofs
of Lemmas 7.9 and 7.12. As a final convention, we will use two distinct ver-
sions of the XOR operator depending on the domain of the arguments, namely,
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˚W f0; 1g ! f0; 1g and ˚W f�1;C1g ! f�1;C1g: In other words, we assume that
˚ ranges in f0; 1g whenever its arguments take values in f0; 1g; and likewise we
assume that˚ ranges in f�1;C1g whenever its arguments take values in f�1;C1g:

7.5 Reduction to high-degree predicates
Let U.n; k/ denote the minimum U.D/ over all predicates DW f0; 1; : : : ; ng !

f�1;C1g with deg.D/ D k: In this notation, our ultimate goal will be to bound
U.n; k/ from below. This section takes a step in that direction. Specifically, we re-
duce the task of analyzing U.n; k/ to that of analyzing U.n; dαne/; where α > 1=4:

This focuses our efforts on high-degree predicates. In the next section, we will fur-
ther reduce the problem to dense predicates, i.e., high-degree predicates that change
value at more or less even intervals in f0; 1; : : : ; ng: These reductions are essential
because dense predicates behave more predictably and are much easier to analyze
than arbitrary predicates. Dense predicates will be the focus of all later sections.

For a predicate DW f0; 1; : : : ; ng ! f�1;C1g; we define its flip vector v D

.v0; v1; : : : ; vn/ 2 f0; 1gnC1 by

vi D

�
1 if D.i/ ¤ D.i � 1/;

0 otherwise;

where we adopt the convention that D.�1/ � 1: Note that deg.D/ D v1 C v2 C

� � � C vn: Also, if D1 and D2 are predicates with flip vectors v.1/ and v.2/; then
D1 ˚D2 has flip vector v.1/ ˚ v.2/: Finally, given a predicate DW f0; 1; : : : ; ng !

f�1;C1g; consider a derived predicate D0W f0; 1; : : : ; mg ! f�1;C1g given by
D0.t/ � D.t C �/; where m > 1 and � > 0 are integers with m C � 6 n:

Then the flip vectors v and v0 of D and D0; respectively, are related as follows:
v0 D .v0 ˚ � � � ˚ v�; v�C1; : : : ; v�Cm/: From the standpoint of communication
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complexity, D0 can be computed by hardwiring some inputs to a protocol for D:

D0
�ˇ̌̌

x1x2 : : : xm

^
y1y2 : : : ym

ˇ̌̌�
D D

�ˇ̌̌
x1x2 : : : xm1�0n�m��

^
y1y2 : : : ym1�0n�m��

ˇ̌̌�
:

Therefore, U.D0/ 6 U.D/:

We begin with a technical lemma. Consider a Boolean vector v D

.v1; v2; : : : ; vn/: We show that there is a subvector .vi ; viC1; : : : ; vj / that is rea-
sonably far from both endpoints of v and yet contains many of the “1” bits present
in v:

LEMMA 7.8 (Sherstov [204]). Let v 2 f0; 1gn; v ¤ 0n: Put k D v1 C � � � C vn:

Then there are indices i; j with i 6 j such that

vi C � � � C vj >
1

14

k

1C log.n=k/
(7.1)

and

minfi � 1; n � j g > j � i: (7.2)

PROOF. By symmetry, we can assume that v1 C v2 C � � � C vm > 1
2
k for some

index m 6 dn=2e: Let α 2 .0; 1
2
/ be a parameter to be fixed later. Let T > 0 be the

smallest integer such that

v1 C v2 C � � � C vbm=2T c < .1 � α/T .v1 C v2 C � � � C vm/:
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Clearly, T > 1: Since v1 C v2 C � � � C vbm=2T c 6 m=2T ; we further obtain

1 6 T 6 1C
1C log.n=k/

log.2 � 2α/
:

Now,

vbm=2T cC1 C � � � C vbm=2T �1c D .v1 C � � � C vbm=2T �1c/�
>.1�α/T �1.v1Cv2C���Cvm/

� .v1 C � � � C vbm=2T c/�
<.1�α/T .v1Cv2C���Cvm/

>
1

2
α.1 � α/T �1k

>
1

2
α.1 � α.T � 1//k

>
1

2
α
�

1 � α �
1C log.n=k/

log.2 � 2α/

�
k: (7.3)

Set α D 0:23=.1 C log.n=k//; i D bm=2T c C 1; and j D bm=2T �1c: Then one
easily verifies (7.2), while (7.1) is immediate from (7.3).

We are now ready to prove the desired reduction to high-degree predicates.
Throughout this proof, we will freely use the opening remarks of this section, often
without mention.

LEMMA 7.9 (Sherstov [204]). For all integers n; k with 1 6 k 6 n;

U.n; k/ >
5

6
K min

mDK;:::;n;

1=46α61

�
1

m
U.m; dαme/

�
;

where

K D

�
1

14

k

1C log.n=k/

�
:
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PROOF. Let DW f0; 1; : : : ; ng ! f�1;C1g be any predicate with deg.D/ D k:

As outlined before, the intuition is to express some complicated (i.e., high-degree)
predicate as the XOR of a small number of predicates derived from D: The details
follow.

Let v D .v0; v1; : : : ; vn/ be the flip vector of D: Apply Lemma 7.8 to
.v1; : : : ; vn/ and let i; j be the resulting indices, i 6 j: Put m D j � i C 1:

Since vi C � � � C vj > K; we have

K 6 m 6 n: (7.4)

Define predicates D�.m�1/; : : : ; D0; : : : ; Dm�1, each a mapping f0; 1; : : : ; mg !

f�1;C1g; by Dr.t/ � D.t C i � 1 C r/: Then (7.2) shows that each of these
predicates can be computed by taking a protocol for D and fixing all but the first m

variables to appropriate values. Thus,

U.D/ > U.Dr/; r D �.m � 1/; : : : ; .m � 1/: (7.5)

The flip vector of D0 is .�; vi ; : : : ; vj / for some � 2 f0; 1g; which means that
deg.D0/ D vi C � � � C vj : If deg.D0/ > m=2; then the theorem is true for D in
view of (7.4) and (7.5). Thus, we can assume the contrary:

K 6 vi C � � � C vj 6
1

2
m: (7.6)
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If we write the flip vectors of D�.m�1/; : : : ; Dm�1 one after another as row
vectors, we obtain the following matrix A:

A D

26666666666664

� � � � � � � � � � � vi

� � � � � � � � � � vi viC1

� � � � � � � � � vi viC1 viC2
:::

:::
:::

:::
:::

:::
:::

:::
:::

� vi viC1 viC2 viC3 � � � vj �3 vj �2 vj �1 vj
:::

:::
:::

:::
:::

:::
:::

:::
:::

� vj �2 vj �1 vj � � � � � � � �

� vj �1 vj � � � � � � � � �

� vj � � � � � � � � � �

37777777777775
:

Let T be a suitably large integer to be named later, and let u.1/; u.2/; : : : ; u.T / be
independent random vectors, each selected uniformly from among the rows of A:

Put u D u.1/˚u.2/˚� � �˚u.T /: We will index the columns of A and the components
of all these vectors by 0; 1; : : : ; m (left to right). Let pr stand for the fraction of 1s
in the r th column of A: Every column of A; except the zeroth, contains vi ; : : : ; vj

and some m � 1 additional values. One infers from (7.6) that

K

2m
6 pr 6

3

4
; r D 1; 2; : : : ; m: (7.7)

Therefore,

E
h
.u/1 C � � � C .u/m

i
D

mX
rD1

E
h
.u.1//r ˚ � � � ˚ .u.T //r

i
D

mX
rD1

�
1

2
�

1

2
.1 � 2pr/T

�
by Proposition 7.4

>
1

2
m

�
1 �

1

eTK=m

�
by (7.6), (7.7).
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Fix T D d.ln 2/m=Ke: Then by the last calculation, there is a vector u D

.u0; u1; : : : ; um/ that satisfies u1 C � � � C um > m=4 and is the XOR of some
T rows of A: In other words, there is a predicate D˚W f0; 1; : : : ; mg ! f�1;C1g

that satisfies deg.D˚/ > m=4 and is the XOR of some T 6 6m
5K

predicates from
among D�.m�1/; : : : ; Dm�1: This completes the proof in view of (7.5) and Propo-
sition 7.7.

7.6 Reduction to dense predicates
The proof in this section uses the same setup as Lemma 7.9, except the argument
is now more involved. The reason is that the previous averaging argument is not
strong enough to yield a dense predicate, which is a highly structured object. To
overcome this, we recast the previous argument as a random walk on Zn

2 and show
that it mixes rapidly. In particular, we will need the following lemma that bounds
the mixing time of a random walk.

LEMMA 7.10 (Razborov [174, Lem. 1]). Fix a probability distributionµ on f0; 1gn:

Let fv.1/; v.2/; : : : ; v.n/g be a basis for f0; 1gn as a vector space over GF.2/: Put

p D min
n
µ.0n/;µ.v.1//;µ.v.2//; : : : ;µ.v.n//

o
:

Let u.1/; : : : ; u.T / be independent random vectors, each distributed according to µ:

Then for every v 2 f0; 1gn;

ˇ̌̌
P
h
u.1/
˚ � � � ˚ u.T /

D v
i
� 2�n

ˇ̌̌
6 e�2Tp:

REMARK. Razborov’s article [174] is in Russian. For an English translation, see
Jukna [99, Lem. 24.3].

We are ready to formally define dense predicates and give the promised
reduction.
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DEFINITION 7.11 (Sherstov [204]). Let n; b be positive integers and d > 0 a real
number. A predicate D is called .n; b; d/-dense if D is a predicate f0; 1; : : : ; ng !

f�1;C1g with flip vector .v0; v1; : : : ; vn/ satisfying

vrbC1 C vrbC2 C � � � C v.rC1/b > d; r D 0; 1; 2; : : : ;
jn

b

k
� 1:

LEMMA 7.12 (Sherstov [204]). Let DW f0; 1; : : : ; ng ! f�1;C1g be a predicate
with deg.D/ > 1

4
n: Let b be any integer with 1 6 b 6 1

350
n: Then

U.D/ >
b

n log n
U.D0/;

where D0 is a certain .m; dlog neb; 1
700

b/-dense predicate and 1
350

n 6 m 6 n:

PROOF. Let .v0; v1; : : : ; vn/ be the flip vector of D: Apply Lemma 7.8 to
.v1; : : : ; vn/ and let i; ` be the resulting indices (i 6 `). It will be convenient
to work with a somewhat smaller subvector v D .vi ; : : : ; vj /; where we define
j 2 fi; : : : ; `g to be the largest integer so that b j .j � i C 1/: Since b 6 1

350
n and

vi C � � � C v` > 1
168

n; this gives:

vi C � � � C vj >
1

350
n: (7.8)

Defining m D j � i C 1; we infer that 1
350

n 6 m 6 n; as desired. We view
v D .vi ; : : : ; vj / as composed of consecutive blocks, each b bits long:

v D

0@ vi ; : : : ; viCb�1

block 1

; viCb; : : : ; viC2b�1

block 2

; � � � � � � ; vj �bC1; : : : ; vj

block m=b

1A : (7.9)
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For r D 1; 2; : : : ; b; define the r th layer of v; denoted ´.r/; to be the vector obtained
by taking the r th component from each of the above blocks:

´.r/
D .vi�1Cr ; vi�1CbCr ; : : : ; vj �bCr/ 2 f0; 1gm=b:

We say of a layer ´ that it is perfect if it does not have dlog ne consecutive compo-
nents equal to 0: If more than 1

700
b of the layers are perfect, take D0 to be the predi-

cate with flip vector .v0˚� � �˚vi�1; vi ; : : : ; vj /: Clearly, D0 is .m; dlog neb; 1
700

b/-
dense. Furthermore, U.D0/ 6 U.D/; by the same argument as in Lemma 7.9. As
a result, the theorem holds in this case.

Thus, we may assume that at least .1 � 1
700

/b of the layers are not perfect.
In view of (7.8), at most .1 � 1

350
/b layers can be zero vectors. Therefore, 1

700
b or

more layers are nonzero and not perfect. These are the only layers we will consider
in the remainder of the proof.

Define predicates D�.m�b/; D�.m�2b/; : : : ; D�b; D0; Db; : : : ; Dm�2b; Dm�b;

each a mapping f0; 1; : : : ; mg ! f�1;C1g; by Dr.t/ � D.t C i � 1C r/: These
are a subset of the predicates from the proof of Lemma 7.9, and again

U.D/ > U.Dr/ for each r: (7.10)

Writing the flip vectors of these predicates one after another as row vectors yields
the following matrix B:

B D2666666664

� � � � � � � � � block 1

� � � � � � � � block 1 block 2
:::

:::
:::

:::
:::

:::
:::

� block 1 block 2 block 3 � � � block m
b
� 2 block m

b
� 1 block m

b
:::

:::
:::

:::
:::

:::
:::

� block m
b
� 1 block m

b
� � � � � � �

� block m
b

� � � � � � � �

3777777775
;
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where the blocks refer to the partition in (7.9). Let T be a suitably large integer
to be named later, and let u.1/; u.2/; : : : ; u.T / be independent random vectors, each
selected uniformly from among the rows of B: Put u D u.1/˚u.2/˚� � �˚u.T /: We
will index the columns of B and the components of u by 0; 1; : : : ; m (left to right).
Key to analyzing the distribution of u is the following claim.

CLAIM 7.13 (Sherstov [204]). Let T > .m=b/ ln n: Let � 2 f1; 2; : : : ; bg be such
that the layer ´.�/ is nonzero and not perfect. Let s 2 f0; b; 2b; 3b; : : : g be such
that s C dlog neb 6 m: Then

P
h
.u/sC� D .u/sCbC� D � � � D .u/sC.dlog ne�1/bC� D 0

i
6

2

n
:

PROOF. Let B 0 be the matrix whose columns are the following columns of B:
sC�; sC bC�; : : : ; sC .dlog ne� 1/bC�; in that order. Since ´.�/ is nonzero
and not perfect, ´.�/ has dlog ne C 1 consecutive components with values either
0; 0; : : : ; 0; 1 or 1; 0; 0; : : : ; 0: Consequently, B 0 must contain one of the following
submatrices, each of size .dlog ne C 1/ � dlog ne:

2666666664

0 0 0 � � � 0 0

0
1

1

:::

1
1

1
�

3777777775
or

2666666664
�

1
1

:::

1
1

1
0

0 0 0 � � � 0 0

3777777775
:

The claim now follows from Lemma 7.10, since 2�dlog ne C e�2T � b
2m 6 2=n:

We return to the proof of the lemma. Fix T D d.m=b/ ln ne: Let s D 0 and
apply Claim 7.13 with every � 2 f1; 2; : : : ; bg for which the layer ´.�/ is nonzero
and not perfect. Since there are at least 1

700
b such choices for �; we conclude by
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the union bound that

P
�
.u/1 C .u/2 C � � � C .u/dlog neb <

1

700
b

�
6 b �

2

n
:

The same calculation applies to the next set of dlog neb components of u (i.e.,
s D dlog neb), and so on. Applying a union bound across all these m=.dlog neb/

calculations, we find that with probability

1 �
m

dlog neb

�
b �

2

n

�
> 0;

the predicate whose flip vector is u is .m; dlog neb; 1
700

b/-dense. Fix any such
predicate D0: Since D0 is the XOR of T 6 .n log n/=b predicates from among
D�.m�b/; : : : ; Dm�b; the lemma follows by (7.10) and Proposition 7.7.

7.7 Univariate approximation with clusters of nodes
Crucial to our study of dense predicates are certain approximation problems to
which they give rise. Roughly speaking, the hardness of such an approximation
problem for low-degree polynomials translates into the communication hardness
of the associated predicate. This section carries out the first part of the program,
namely, showing that the approximation task at hand is hard for low-degree polyno-
mials. We examine this question in its basic mathematical form, with no extraneous
considerations to obscure our view. How communication fits in this picture will
become clear in the next two sections.

For a finite set X � R; a function f WX ! R; and an integer r > 0; define

ε�.f; X; r/ D min
p2Pr

max
x2X
jp.x/ � f .x/j:
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In words, ε�.f; X; r/ is the least error (in the uniform sense) to which a degree-
r polynomial can approximate f on X: The following fact from approximation
theory is useful in estimating this error; see, for example, Rivlin [185, Thm. 1.15].

FACT 7.14. Let X D fx1; x2; : : : ; xrC2g be a set of rC2 distinct reals. Let f WX !

R be given. Put ω.x/ D .x � x1/.x � x2/ � � � .x � xrC2/: Then

ε�.f; X; r/ D

ˇ̌̌PrC2
iD1 Œf .xi/=ω0.xi/�

ˇ̌̌
PrC2

iD1 Œ1=jω0.xi/j�
:

To develop some intuition for the work in this section, consider the follow-
ing approximation problem. Let f W f0; 1; : : : ; ng ! f�1;C1g be defined by

f .x/ D

�
�1 if x D bn=2c;

C1 otherwise:

It is well-known that any polynomial that approximates f within 1=3 has degree
˝.n/: For example, this follows from work by Paturi [165]. The approximation
problem of interest to us is similar, except that our points need not be as evenly
spaced as 0; 1; : : : ; n but rather may form clusters. As a result, Paturi’s results and
methods do not apply, and we approach this question differently, using the first-
principles formula of Fact 7.14. Specifically, our main result in this section is as
follows.

LEMMA 7.15 (Sherstov [204]). Let positive integers L; d and a real number B >
d be given. Let fxij W i D 1; : : : ; LI j D 1; : : : ; dg be a set of Ld distinct reals,
where xij 2 Œ.i � 1/B; iB� and

jxij � xi 0j 0j > 1 for .i; j / ¤ .i 0; j 0/: (7.11)
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Let x0 2 Œ1
4
LB; 3

4
LB�: Then any polynomial p with

p.x0/ D 1; jp.xij /j <
1

2

�
1

LB

�4dC1

for all i; j

has degree at least
�

1
2
L � 1

�
d:

PROOF. Define f .x/ by

f .x/ D

�
1 if x D x0;

0 if x D xij for some i; j:

By symmetry, we can assume that x0 2 Œ1
4
LB; 1

2
LB�: Fix an integer ` 6 d1

2
Le so

that x0 2 Œ.` � 1/B; `B�: Put

X D fx0g [ fxij W i D 1; : : : ; 2` � 1I j D 1; : : : ; dg:

With ω.x/ D
Q

y2X.x � y/; Fact 7.14 implies that

ε�.f; X; jX j � 2/ >
1

jX j

minx2X jω0.x/j

jω0.x0/j
: (7.12)

We proceed to estimate the denominator and numerator of (7.12). Since x0

is distinct from each xij ; the quantity

δ D min
iD1;:::;2`�1;

j D1;:::;d

jx0 � xij j
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satisfies δ > 0: We have:

jω0.x0/j D

dY
j D1

2`�1Y
iD1

jx0 � xij j 6 δ
dY

j D1

2`�1Y
iD1

B

�
jx0 � xij j

B

�
š

6ji�`jC1

6 δ �
�
`Š `Š B2`�1

�d

: (7.13)

On the other hand, every xi 0j 0 2 X satisfies:

jω0.xi 0j 0/j D
Y

x2Xnfxi0j 0 g

jx � xi 0j 0j

> δ
dY

j D1

Y
iD1;:::;2`�1

i…fi 0�1;i 0;i 0C1g

jxij � xi 0j 0j by (7.11)

> δ
dY

j D1

Y
iD1;:::;2`�1

i…fi 0�1;i 0;i 0C1g

B

�
jxij � xi 0j 0j

B

�
›

>ji�i 0j�1

> δ �

 
`Š `Š B2`�4

`4

!d

: (7.14)

Now (7.12) yields, in view of (7.13) and (7.14):

ε�.f; X; jX j � 2/ >
1

2

�
1

LB

�4dC1

;

which concludes the proof since jX j >
�

1
2
L � 1

�
d C 1:
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7.8 Key analytic property of dense predicates
We now transition to the final ingredient of our proof, smooth orthogonalizing dis-
tributions for a given predicate D: This informal term refers to a distribution on
f0; 1gn that does not put too little weight on any point (the smooth part) and under
which D.

P
xi/ is approximately orthogonal to all low-degree characters χS (the

orthogonalizing part). Our task is to establish the existence of such distributions for
every dense predicate. Once this is accomplished, we will be able to treat a dense
predicate as if it were the familiar parity function, whose defining analytic property
is precisely its orthogonality to the lower-order characters under the uniform distri-
bution. Crucial to the development below will be the inapproximability result that
we proved in Section 7.7.

For a polynomial p; a predicate DW f0; 1; : : : ; ng ! f�1;C1g; and a number
N > 0; define the advantage of p in computing D by

adv.p; N; D/ D N min
tD0;:::;n

fD.t/p.t/g C

nX
tD0

�
n

t

�
2n

D.t/p.t/:

This quantity is conceptually close to the correlation of p and D with respect the
binomial distribution. There is a substantial difference, however: if p and D differ
in sign at some point, this causes a penalty term to be subtracted. We will be
interested in values N � 1; when even a single error of p results in a large penalty.
Define

advr.N; D/ D max
p

adv.p; N; D/;

where the maximization is over p 2 Pr with jp.t/j 6 1 for t D 0; 1; : : : ; n: As we
now show, this quantity is closely related to smooth orthogonalizing distributions
for D:

THEOREM 7.16 (Sherstov [204]). Fix a predicate DW f0; 1; : : : ; ng ! f�1;C1g

and an integer r > 0: Then for every N > 1; there is a distribution µ on f0; 1gn
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such that µ.x/ > 1
2nN

for each x and

ˇ̌̌
E
x

�
D.
P

xi/µ.x/ χS.x/
�ˇ̌̌

6
1

2nN
advr.N � 1; D/; jS j 6 r:

PROOF. Abbreviate f .x/ D D.
P

xi/ and consider the following linear program:

variables: µ.x/ for all x; ε

minimize: ε

subject to:

ˇ̌̌̌
ˇ̌ X
x2f0;1gn

µ.x/f .x/χS.x/

ˇ̌̌̌
ˇ̌ 6 ε for jS j 6 r;

X
x2f0;1gn

µ.x/ D 1;

µ.x/ >
1

2nN
for each x:

(LP1)

It suffices to show that the optimum of this program is at most 1
N

advr.N � 1; D/:

For this, we pass to the dual:

variables: αS (for jS j 6 r); ξx (for all x); �

maximize:
1

N

0@.N � 1/�C
1

2n

X
x2f0;1gn

.�C ξx/

1A
subject to: f .x/

X
jS j6r

αS χS.x/ > �C ξx for all x;

X
jS j6r

jαS j 6 1;

αS 2 R for jS j 6 r;

ξx > 0 for all x;

� 2 R:

(LP2)
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The dual programs (LP1) and (LP2) are both feasible and thus have the same finite
optimum. Therefore, our task reduces to proving that the optimum of (LP2) is at
most 1

N
advr.N � 1; D/: Fix an optimal solution to (LP2). Then

f .x/
X

jS j6r

αS χS.x/ D �C ξx for all x; (7.15)

since in case of a strict inequality .>/ we could increase the corresponding variable
ξx by a small amount to obtain a feasible solution with greater value. Furthermore,
we claim that

� D min
x2f0;1gn

(
f .x/

X
jS j6r

αS χS.x/

)
: (7.16)

Indeed, let m stand for the right-hand side of (7.16). Then � 6 m because each ξx

is nonnegative. It remains to show that � > m: If we had � < m; then (7.15) would
imply that ξx > m�� for all x: As a result, we could obtain a new feasible solution
ξ 0

x D ξx C .� � m/ and �0 D m: This new solution satisfies �0 C ξ 0
x D �C ξx

for all x: Moreover, �0 > �; which results in a greater objective value and yields
the desired contradiction. In summary, � D m:

In view of (7.15) and (7.16), the optimum of (LP2) is

1

N
max
φ

(
.N � 1/ min

x

˚
f .x/φ.x/

	
C

1

2n

X
x

f .x/φ.x/

)
; (7.17)

where the maximization is over functions φ of the form

φ.x/ D
X

jS j6r

αS χS.x/; where
X

jS j6r

jαS j 6 1: (7.18)
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Fix φ that optimizes (7.17). By (7.18),

max
x2f0;1gn

jφ.x/j 6 1:

Put

φsymm.x/ D
1

nŠ

X
σ2Sn

φ.xσ.1/; : : : ; xσ.n//:

Since f is symmetric, φ and φsymm have the same objective value in (7.17). By the
symmetrization argument (Proposition 2.2), there is a univariate polynomial p 2 Pr

with

φsymm.x/ D p.x1 C � � � C xn/ for all x 2 f0; 1gn:

For t D 0; 1; : : : ; n;

jp.t/j D jp.

t times¹
1C � � � C 1C0C � � � C 0/j

6 max
x2f0;1gn

jφsymm.x/j

6 max
x2f0;1gn

jφ.x/j

6 1:

Replacing φ.x/ by p.x1C � � � C xn/ in (7.17), we see that the optimum of (LP2) is
at most

1

N
max

p

(
.N � 1/ min

tD0;:::;n
fD.t/p.t/g C

1

2n

nX
tD0

 
n

t

!
D.t/p.t/

)
;
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where the maximization is over p 2 Pr with jp.t/j 6 1 for t D 0; 1; : : : ; n: This
latter quantity is 1

N
advr.N � 1; D/; by definition.

Theorem 7.16 states that a smooth orthogonalizing distribution for D ex-
ists whenever low-degree polynomials have negligible advantage in computing D:

Accordingly, we proceed to examine the advantage achievable by low-degree poly-
nomials.

LEMMA 7.17 (Sherstov [204]). Let D be an .n; B; 2d C 1/-dense predicate,
where n; B; d are positive integers. Assume that advr.N; D/ > n2�n=6; where
r < deg.D/ and N > 0 are given. Then there are b n

B
cd distinct reals fxij W i D

1; : : : ; b n
B
cI j D 1; : : : ; dg and a polynomial p 2 Pr such that:

xij 2 Œ.i � 1/B; iB� for all i; j;

jxij � xi 0j 0j > 1 for all .i; j / ¤ .i 0; j 0/;

jp.xij /j 6
p

n=N for all i; j;

p.x0/ D 1 for some x0 2 Œ1
4
n; 3

4
n�:

PROOF. Fix q 2 Pr with jq.t/j 6 1 for t D 0; 1; : : : ; n and adv.q; N; D/ D

advr.N; D/: Fix k 2 f0; 1; : : : ; ng with

 
n

k

!
D.k/q.k/ D max

tD0;:::;n

( 
n

t

!
D.t/q.t/

)
:

Since deg.q/ < deg.D/; the quantity
�

n

t

�
D.t/q.t/ is positive for at most n values

of t D 0; 1; : : : ; n: Therefore,

adv.q; N; D/ 6 n �

�
n

k

�
2n

D.k/q.k/ 6 n �

�
n

k

�
2n

:
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Recalling that adv.q; N; D/ > n2�n=6; we infer that 1
4
n 6 k 6 3

4
n: Put

p.t/ D
1

q.k/
q.t/:

Taking x0 D k; we have 1
4
n 6 x0 6 3

4
n and p.x0/ D 1; as desired. It remains to

find the points xij : For this, we need the following claim.

CLAIM 7.18 (Sherstov [204]). Let a; b be integers with a < b and D.a/ ¤ D.b/:

Then jp.ξ /j 6
p

n=N for some ξ 2 Œa; b�:

PROOF. If q vanishes at some point in Œa; b�; we are done. In the contrary case, q

is nonzero and has the same sign at every point of Œa; b�; which means that either
q.a/D.a/ < 0 or q.b/D.b/ < 0: Since adv.q; N; D/ > 0; we have:

minfjq.a/j; jq.b/jg 6
n

N
max

tD0;:::;n

(�
n

t

�
2n

D.t/q.t/

)
D

n

N
�

�
n

k

�
2n
� jq.k/j

6

p
n

N
jq.k/j;

and hence minfjp.a/j; jp.b/jg 6
p

n=N:

Fix an integer i D 1; 2; : : : ; b n
B
c: Since D is .n; B; 2d C 1/-dense, D

changes value at least 2d times in Œ.i � 1/B C 1; iB�: As a result, there are at least
d pairs of integers .a1; b1/; : : : ; .ad ; bd / with

D.a1/ ¤ D.b1/; D.a2/ ¤ D.b2/; : : : ; D.ad / ¤ D.bd /

and

.i � 1/B C 1 6 a1 < b1 < a2 < b2 < � � � < ad < bd 6 iB:
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In view of Claim 7.18, this provides the desired d points in Œ.i � 1/B C 1; iB�:

We have reached the main result of this section.

THEOREM 7.19 (Sherstov [204]). Let D be an .n; B; 2d C 1/-dense predicate,
where n; B; d are positive integers with B j n and n > 3B: Then there is a distri-
bution µ on f0; 1gn such that:

µ.x/ >
1

2n

1

3n4dC1:5
for each x;ˇ̌̌

E
x

�
D.jxj/µ.x/χS.x/

�ˇ̌̌
6 2�7n=6 for jS j <

nd

6B
:

PROOF. Put N D 3n4dC1:5: In view of Theorem 7.16, it is sufficient to show that
advr.N � 1; D/ < n2�n=6 for all r < nd

6B
: So assume, for the sake of contradiction,

that advr.N � 1; D/ > n2�n=6 for some r < nd
6B

: Since deg.D/ > n
B

.2d C 1/;

we have r < deg.D/: Thus, Lemma 7.17 is applicable and yields nd
B

distinct reals
fxij W i D 1; : : : ; n

B
I j D 1; : : : ; dg and a polynomial p 2 Pr such that:

xij 2 Œ.i � 1/B; iB� for all i; j;

jxij � xi 0j 0j > 1 for all .i; j / ¤ .i 0; j 0/;

jp.xij /j < 1
2

�
1
n

�4dC1 for all i; j;

p.x0/ D 1 for some x0 2 Œ1
4
n; 3

4
n�:

Applying Lemma 7.15 with L D n
B

; we infer that r >
�

1
2

n
B
� 1

�
d; which yields

r > nd
6B

since n
B

> 3: We have reached the desired contradiction to r < nd
6B

:

7.9 Unbounded-error complexity of symmetric functions
This section consolidates the preceding developments into our main result, a near-
optimal lower bound on the unbounded-error communication complexity of every
symmetric function. As outlined earlier, we will first solve this problem for dense
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predicates and then extend our work to the general case via the reductions of Sec-
tions 7.5 and 7.6.

THEOREM 7.20 (Sherstov [204]). Let α > 0 be a sufficiently small absolute con-
stant. Let D be an .m; bdlog ne; 1

700
b/-dense predicate, where 1

350
n 6 m 6 n and

b D bαn= log2 nc: Then

U.D/ > ˝

�
n

log n

�
:

PROOF. Throughout the proof we will, without mention, use the assumption that n

is large enough. This will simplify the setting of parameters, the manipulation of
floors and ceilings, and generally make the proof easier to follow.

Fix an integer v 2 Œ1
8
m; 1

4
m� with bdlog ne j v: It is clear that v �

3bdlog ne: Define D0W f0; 1; : : : ; vg ! f�1;C1g by D0.t/ � D.t/: Since D0 is
.v; bdlog ne; 1

700
b/-dense, Theorem 7.19 provides a distribution µ on f0; 1gv with

µ.´/ > 2�v 2
�αn=350 log n; ´ 2 f0; 1gv; (7.19)

and

ˇ̌̌̌
É
�
D.j´j/µ.´/χS.´/

�ˇ̌̌̌
6 2�7v=6; jS j <

v

6 � 1401dlog ne
: (7.20)

Define φW f0; 1gv ! R by φ.´/ D D.j´j/µ.´/: Restating (7.20),

j Oφ.S/j 6 2�7v=6; jS j <
v

6 � 1401dlog ne
: (7.21)
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Furthermore, Proposition 2.1 reveals that

max
S�Œv�

j Oφ.S/j 6 2�v: (7.22)

Let A be the .2v; v; 8�vφ/-pattern matrix. By (7.21), (7.22), and Theorem 4.3,

kAk 6 4�v 2
�v=12�1401dlog ne : (7.23)

By (7.19), every entry of A has absolute value at least 16�v 2
�αn=350 log n : Combining

this observation with (7.23) and Theorem 7.6,

rk˙ A > 2
v=12�1401dlog ne 2

�αn=350 log n :

Recall that v > 1
8

m > 1
8�350

n: Hence, for a suitably small constant α > 0;

rk˙ A > 2˝.n= log n/:

It remains to relate the sign-rank of A to the communication complexity of
D: Let F be the .2v; v; f /-pattern matrix, where f .´/ D D.j´j/: Then rk˙ A D

rk˙ F because A and F have the same sign pattern. But F is a submatrix of the
communication matrix of D; namely,

M D
h
D.jx ^ yj/

i
x2f0;1gm;y2f0;1gm

:

Thus,

rk˙ M > rk˙ F D rk˙ A > 2˝.n= log n/:

In view of Theorem 7.2, the proof is complete.
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COROLLARY 7.21 (Sherstov [204]). Let DW f0; 1; : : : ; ng ! f�1;C1g be a predi-
cate with deg.D/ > 1

4
n: Then

U.D/ > ˝

�
n

log4 n

�
:

PROOF. Immediate from Lemma 7.12 and Theorem 7.20.

At last, we arrive at the main result of this chapter, cf. Theorem 7.1 above.

THEOREM 7.22 (Sherstov [204]). Let DW f0; 1; : : : ; ng ! f�1;C1g be a noncon-
stant predicate, k D deg.D/: Then

�

�
k

f1C log.n=k/g log4 n

�
6 U.D/ 6 �

�
k log

2n

k

�
:

PROOF. The lower bound is immediate from Lemma 7.9 and Corollary 7.21. To
prove the upper bound, fix p 2 Pk with sgn p.t/ D D.t/ for t D 0; 1; : : : ; n: Put

M D
h
D.jx ^ yj/

i
x;y

; R D
h
p.x1y1 C � � � C xnyn/

i
x;y

;

where the indices run as usual: x; y 2 f0; 1gn: Then MxyRxy > 0 for all x and y:

Thus, the sign-rank of M does not exceed
Pk

iD0

�
n

i

�
: In view of Theorem 7.2, this

completes the proof.

7.10 Concluding remarks
It is natural to wonder whether the logarithmic factors in Theorem 7.22 can be
eliminated. The answer varies from one predicate to another. There are indeed
predicates DW f0; 1; : : : ; ng ! f�1;C1g for which U.D/ D �.deg.D//: For ex-
ample, the conjunction predicate, given by ANDn.t/ D �1 , t D n; has de-
gree 1 and unbounded-error complexity �.1/; as one can verify from the repre-
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sentation ANDn.
P

xiyi/ D 1 � 2
Q

xi �
Q

yi : Similarly, the familiar predicate
PARITYn.t/ D .�1/t has degree n and unbounded-error complexity �.n/ by
Forster’s result [70]. At the same time, there are predicates D for which a loga-
rithmic gap exists between deg.D/ and U.D/: One such predicate is disjunction,
given by ORn.t/ D 1 , t D 0; which has degree 1 and unbounded-error com-
plexity �.log n/:

PROPOSITION 7.23 (Sherstov [204]). U.ORn/ D �.log n/:

PROOF. The upper bound is immediate from Theorem 7.22. For the lower bound,
note that

tM
iD1

xi ^ yi D

4t_
iD1

fi.x1; : : : ; xt/ ^ gi.y1; : : : ; yt/;

where fi ; gi are suitable Boolean functions (in fact, conjunctions of literals). This
yields the inequality U.PARITYt/ 6 U.OR4t /; which completes the proof since
U.PARITYt/ D �.t/ by Forster’s result [70].

The lower bound of Proposition 7.23 is of course valid for any predicate D

that contains disjunction or its negation as a subfunction. More precisely:

PROPOSITION 7.24 (Sherstov [204]). Let DW f0; 1; : : : ; ng ! f�1;C1g be a pred-
icate with flip vector v: If v contains the subvector .1; 0; 0; : : : ; 0™

m

/; then

U.D/ > ˝.log m/:

To illustrate, Proposition 7.24 shows that the majority predicate MAJn.t/ D �1 ,

t > n=2 has degree 1 and unbounded-error complexity �.log n/: Other threshold
predicates can be handled analogously.
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Chapter 8

Alternation vs. Unbounded-Error Communication
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We continue our study of unbounded-error communication complexity, fo-
cusing this time on the circuit class AC0

: The main result of this chapter is the first
polynomial lower bound on the unbounded-error communication complexity of a
function in AC0

: As a corollary, we establish the separations †cc
2 6� UPPcc and

…cc
2 6� UPPcc in communication complexity, thereby solving a longstanding open

problem due to Babai et al. [23]. As another corollary, we obtain the first exponen-
tial, tight lower bound on the sign-rank of polynomial-size DNF formulas as well
as the first exponential lower bound on the size of threshold-of-majority circuits for
AC0

:

8.1 Introduction
In the previous chapter, we studied the unbounded-error communication complexity
of symmetric functions. We continue the study of the unbounded-error model in the
context of AC0

; the class of functions f W f0; 1gn�f0; 1gn ! f�1;C1g computable
by a polynomial-size constant-depth circuit of AND, OR, and NOT gates. Since
AC0 can compute the inner product function

f .x; y/ D

kM
iD1

.xi ^ yi/

on k D logc n variables for any constant c > 1; work by Forster [70] gives a
polylogarithmic lower bound on the unbounded-error communication complexity
of AC0

: No stronger bound was known. The main result of this chapter is an expo-
nentially stronger lower bound.

THEOREM 8.1 (Razborov and Sherstov [178]). Define

fm.x; y/ D

m̂

iD1

m2_
j D1

.xij ^ yij /:
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Then

U.fm/ D ˝.m/:

We further show that the lower bound in Theorem 8.1 is almost tight, with
a matching upper bound of O.m log m/: Moreover, Theorem 8.1 is optimal with
respect to circuit depth: it is straightforward to verify that AC0 circuits of depth 1

and 2 have unbounded-error complexity O.log m/: As a corollary, we obtain the
separations

†cc
2 6� UPPcc; …cc

2 6� UPPcc;

solving an open problem due to Babai et al. [23]. These separations are best possible
in that UPPcc trivially contains the first two levels of the polynomial hierarchy: †cc

0 ;

†cc
1 ; …cc

0 ; …cc
1 :

As an application of our result to circuit complexity, we prove a lower bound
of expf˝.m/g on the size of any threshold-of-majority circuit that computes the
function fm.x; y/ above. This is the first exponential lower bound for threshold-
of-majority circuits computing a function in AC0

: It substantially generalizes and
strengthens earlier work by Krause and Pudlák [132].

As a final corollary, we obtain a lower bound of expf˝.n1=3/g on the sign-
rank of polynomial-size DNF formulas in n variables. This lower bound nearly
matches the upper bound of expf QO.n1=3/g due to Klivans and Servedio [122].
Our result gives the first exponential, unconditional lower bound for learning
polynomial-size DNF formulas in any reasonable model.

The remainder of this chapter is organized as follows. We start with an intu-
itive overview of our proof in Section 8.2, comparing and contrasting our approach
with the work in the previous chapter. After a technical development that spans
several sections, we arrive at our main result on unbounded-error communication
complexity and circuit complexity in Section 8.7. The applications to complex-
ity classes and learning theory are discussed in the concluding two sections of this
chapter.
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8.2 Overview of the proof
At a high level, we adopt the approach introduced in Chapter 7 in the context of de-
termining the unbounded-error communication complexity of symmetric functions.
This approach features three main steps.

(1) First, one proves that the Boolean function f W f0; 1gn ! f�1;C1g of inter-
est has a smooth orthogonalizing distribution. This term refers to a smooth
distribution on f0; 1gn (i.e., one that places nontrivial weight on all but a tiny
fraction of the inputs) with respect to which f is orthogonal to all low-degree
polynomials.

(2) Next, one applies to f the pattern matrix method of Chapter 4, which yields a
sign matrix F that has low spectral norm with respect to a smooth distribution
on the matrix entries. By design, the columns of F are applications of f to
various subsets of n variables from among x1; x2; : : : ; xN ; where N > 4n:

(3) Finally, one invokes Forster’s generalized lower bound [70, 71] on the sign-
rank of matrices with low spectral norm and concludes that F has high
unbounded-error communication complexity.

In Chapter 7, we carried out this three-step program for each symmetric function
f: Our current focus, on the other hand, is the circuit class AC0

: Accordingly, we
take the function f in the above program to be a suitable DNF formula. Our proof
is devoted almost entirely to the first step of the program, i.e., showing that f

has a smooth orthogonalizing distribution. Once this crucial property is settled,
steps 2 and 3 are straightforward. We note that the implementation of step 1 is quite
nontrivial and is unrelated to the development in Chapter 7.

Having described our proof at a high level, we will now examine it in more
detail, from the bottom up. Figure 8.1 illustrates the main components of our proof.
A starting point in our study is an elegant result due to Minsky and Papert [153],
who constructed a linear-size DNF formula that cannot be sign-represented by poly-
nomials of low degree.

Second, we revisit a fundamental technique from approximation theory, the
interpolation bound, which bounds a degree-d univariate polynomial p on an inter-
val based on the values of p at dC1 distinct points. By combining the interpolation
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Figure 8.1: Proof outline.

bound with an adapted version of Minsky and Papert’s argument, we establish a key
intermediate result (Lemma 8.8). This result concerns multivariate polynomials that
have nonnegligible agreement with the Minsky-Papert function and constrains their
behavior on a large fraction of the inputs.

We proceed by deriving a Fourier-theoretic property common to all low-
degree multivariate polynomials on f0; 1gn: we show that their values on f0; 1gn

can be conveniently bounded in terms of their behavior on certain small subcubes
(Lemma 8.6). In light of this Fourier-theoretic observation, our intermediate re-
sult on multivariate polynomials takes on a much stronger form. Namely, we prove
that multivariate polynomials with any nontrivial agreement with the Minsky-Papert
function are highly constrained throughout the hypercube (Theorem 8.10). With
some additional work in Section 8.5, we are able to deduce the existence of a
smooth distribution on f0; 1gn with respect to which the Minsky-Papert function
is orthogonal to all low-degree polynomials. This completes step 1 of the above
program, as desired.
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8.3 Technical preliminaries
The following is a straightforward generalization of Minsky and Papert’s sym-
metrization argument, Proposition 2.2.

PROPOSITION 8.2 (Razborov and Sherstov [178]). Let n1; : : : ; nk be positive in-
tegers, n D n1 C � � � C nk: Let φW f0; 1gn ! R be representable by a real n-
variate polynomial of degree r: Write x 2 f0; 1gn as x D .x.1/; : : : ; x.k//; where
x.i/ D .xn1C���Cni�1C1; : : : ; xn1C���Cni

/: Then there is a polynomial p on Rk of de-
gree at most r such that

E
σ12Sn1

;:::;σk2Snk

h
φ.σ1x.1/; : : : ;σkx.k//

i
D p

�
jx.1/
j; : : : ; jx.k/

j

�
; x 2 f0; 1gn:

Recall that vectors v1; : : : ; vn in Rr are said to be in general position if no
r of them are linearly dependent. A powerful result due to Forster [70] states that
any set of vectors in general position can be balanced in a useful way:

THEOREM 8.3 (Forster [70, Thm. 4.1]). Let U � Rr be a finite set of vectors in
general position, jU j > r: Then there is a nonsingular transformation A 2 Rr�r

such that

X
u2U

1

kAuk2
.Au/.Au/T

D
jU j

r
Ir :

Implicit in Forster’s work [70] is the following theorem, which is a key
starting point in this chapter.

THEOREM 8.4 (Forster [70], implicit). Let X; Y be finite sets, M D ŒMxy�x2X;y2Y

a real matrix .M ¤ 0/: Put r D rk˙ M: Then there is a matrix R D ŒRxy�x2X;y2Y
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such that:

rk R D r; (8.1)

M ıR > 0; (8.2)

kRk∞ 6 1; (8.3)

kRkF D
p
jX j jY j=r: (8.4)

The notation M ı R > 0 above means that all the entries in the matrix M ı R are
nonnegative. The shorthand M ¤ 0 means as usual that M is not the zero matrix.
For completeness, we include a derivation of this result using Theorem 8.3.

PROOF OF THEOREM 8.4. Our treatment is closely analogous to Forster’s deriva-
tion [70], p. 617. Since M ¤ 0; it follows that r > 1: Fix a matrix Q D ŒQxy� of
rank r such that

QxyMxy > 0 whenever Mxy ¤ 0: (8.5)

Write

Q D
h
hux; vyi

i
x2X; y2Y

for suitable collections of vectors fuxg � Rr and fvyg � Rr : If the vectors ux;

x 2 X; are not already in general position, we can replace them with their slightly
perturbed versions Qux that are in general position. Provided that the perturbations
are small enough, property (8.5) will still hold, i.e., we will have h Qux; vyiMxy > 0

whenever Mxy ¤ 0: As a result, we can assume w.l.o.g. that fuxg are in general
position. Furthermore, a moment’s reflection reveals that the vectors fvyg can be
assumed to be all nonzero.
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Since rk˙ M 6 rk M; we infer that jX j > r: Theorem 8.3 is therefore
applicable to the set fuxg and yields a nonsingular matrix A with

X
x2X

1

kAuxk
2

.Aux/.Aux/T
D
jX j

r
Ir : (8.6)

Define

R D

�
hux; vyi

kAuxk k.A�1/Tvyk

�
x2X; y2Y

:

It remains to verify properties (8.1)–(8.4). Property (8.1) follows from the represen-
tation R D D1QD2, where D1 and D2 are diagonal matrices with strictly positive
diagonal entries. By (8.5), we know that RxyMxy > 0 whenever Mxy ¤ 0; which
immediately gives us (8.2). Property (8.3) holds because

jhux; vyij

kAuxk k.A�1/Tvyk
D
jhAux; .A�1/Tvyij

kAuxk k.A�1/Tvyk
6 1:

Finally, property (8.4) will follow once we show that
P

x R2
xy D jX j=r for every

y 2 Y: So, fix y 2 Y and consider the unit vector v D .A�1/Tvy=k.A�1/Tvyk: We
have:

X
x2X

R2
xy D

X
x2X

hux; vyi
2

kAuxk
2 k.A�1/Tvyk

2

D

X
x2X

.vT
yA�1/.Aux/.Aux/T.A�1/Tvy

kAuxk
2 k.A�1/Tvyk

2

D vT

 X
x2X

1

kAuxk
2
.Aux/.Aux/T

!
v

D
jX j

r
;
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where the last step follows from (8.6).

8.4 A result on multivariate approximation
The purpose of this section is to establish a certain property of low-degree poly-
nomials on Rm (Theorem 8.10). This property is the backbone of our main proof.
A starting point in our discussion is an interpolation bound, i.e., a bound on the
values of a polynomial on an interval given its values on a finite set of points. Re-
sults of this general form arise routinely in approximation theory. To prove the
specific statement of interest to us, we follow the classical technique of interpolat-
ing the polynomial at strategically chosen points. For other uses of this technique,
see Cheney [60, �7, Lem. 1] and Rivlin [185, Thm. 3.9].

LEMMA 8.5 (Razborov and Sherstov [178]). Let I � R be an interval of length L:

Let p be a polynomial of degree d 6 L such that

jp.xi/j 6 1 .i D 0; 1; : : : ; d /;

where x0; x1; : : : ; xd 2 I are some points with pairwise distances at least 1: Then

max
x2I
jp.x/j 6 2d

 
L

d

!
:

PROOF. Without loss of generality, assume that x0 < x1 < � � � < xd : Fix x 2 I:

For any k 2 f0; 1; : : : ; dg; we have:

dY
iD0
i¤k

jx � xi j 6 L.L � 1/ � � � .L � d C 1/
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and, since jxi � xkj > ji � kj;

dY
iD0
i¤k

jxk � xi j > kŠ.d � k/Š:

Therefore,

dY
iD0
i¤k

jx � xi j

jxk � xi j
6

L.L � 1/ � � � .L � d C 1/

kŠ.d � k/Š
D

 
L

d

! 
d

k

!
:

It remains to substitute this estimate in the Lagrange interpolation formula:

jp.x/j D

ˇ̌̌̌
ˇ̌̌ dX
kD0

p.xk/

dY
iD0
i¤k

x � xi

xk � xi

ˇ̌̌̌
ˇ̌̌ 6

 
L

d

!
dX

kD0

 
d

k

!
D 2d

 
L

d

!
:

We now establish another auxiliary fact. It provides a convenient means to
bound a function whose Fourier transform is supported on low-order characters, in
terms of its behavior on low-weight inputs.

LEMMA 8.6 (Razborov and Sherstov [178]). Let k be an integer, 0 6 k 6 n � 1:

Let f W f0; 1gn ! R be given with Of .S/ D 0 for jS j > k: Then

jf .1n/j 6 2k

 
n

k

!
max
jxj6k
jf .x/j:
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PROOF. Define the symmetric function gW f0; 1gn ! R by g.x/ D χŒn�.x/p.jxj/;

where

p.t/ D
Y

k<i<n

t � i

n � i
:

The following properties of g are immediate:

g.1n/ D .�1/n; (8.7)

g.x/ D 0 .k < jxj < n/: (8.8)

The degree of every monomial in g is between k C 1 and n; so that

Og.S/ D 0 .jS j 6 k/: (8.9)

Furthermore,

X
jxj6k

jg.x/j D

kX
tD0

 
n

t

!
jp.t/j D

kX
tD0

 
n

t

! 
n � t � 1

n � k � 1

!
6 2k

 
n

k

!
: (8.10)

We are now prepared to analyze f: By (8.9),

X
x2f0;1gn

f .x/g.x/ D 0: (8.11)

On the other hand, (8.7) and (8.8) show that

X
x2f0;1gn

f .x/g.x/ D .�1/nf .1n/C
X

jxj6k

f .x/g.x/: (8.12)
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The lemma follows at once from (8.10)–(8.12).

REMARK 8.7 (Razborov and Sherstov [178]). One can use Lemma 8.6 to bound
f on inputs other than 1n: For example, it follows immediately that jf .y/j 6
2k
�

jyj

k

�
maxjxj6k jf .x/j; where y 2 f0; 1gn is arbitrary with jyj > k: We will not

need this observation, however.

We are now in a position to study the approximation problem of interest to
us. Define the sets

Z D f0; 1; 2; : : : ; 4m2
g

m; ZC
D f1; 2; : : : ; 4m2

g
m:

Define F WZ ! f�1;C1g by

F.´/ D

�
�1 if x 2 ZC;

1 otherwise.

For u; ´ 2 Z; let �.u; ´/ D jfi W ui ¤ ´igj be the ordinary Hamming distance.
We shall prove the following intermediate result, inspired by Minsky and Papert’s
analysis [153] of the threshold degree of CNF formulas.

LEMMA 8.8 (Razborov and Sherstov [178]). Let Q be a degree-d real polynomial
in m variables, where d 6 m=3: Assume that

F.´/Q.´/ > �1 .´ 2 Z/: (8.13)

Then jQ.´/j 6 4mCd at every point ´ 2 ZC with �.u; ´/ < m=3; where u D

.12; 32; 52; : : : ; .2m � 1/2/ 2 ZC:

PROOF. Fix ´ 2 ZC with �.u; ´/ < m=3: Define p 2 P2d by

p.t/ D Q.p1.t/; p2.t/; : : : ; pm.t//;
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where

pi.t/ D

�
.t � 2i C 1/2 if ´i D ui (equivalently, ´i D .2i � 1/2),
´i otherwise.

Letting S D fi W ui D ´ig; inequality (8.13) implies that

p.2i � 1/ > �1 .i 2 S/; (8.14)

p.2i/ 6 1 .i D 0; 1; : : : ; m/: (8.15)

CLAIM 8.9 (Razborov and Sherstov [178]). Let i 2 S: Then jp.ξ /j 6 1 for some
ξ 2 Œ2i � 2; 2i � 1�:

PROOF. The claim is trivial if p vanishes at some point in Œ2i � 2; 2i � 1�: In the
contrary case, p maintains the same sign throughout this interval. As a result, (8.14)
and (8.15) show that minfjp.2i � 2/j; jp.2i � 1/jg 6 1:

Claim 8.9 provides jS j > 2m=3 > 2d > deg.p/ points in Œ0; 2m�; with
pairwise distances at least 1; at which p is bounded in absolute value by 1: By
Lemma 8.5,

max
06t62m

jp.t/j 6 2deg.p/

 
2m

deg.p/

!
6 4mCd :

This completes the proof since Q.´/ D p.0/:

Finally, we remove the restriction on �.u; ´/; thereby establishing the main
result of this section.

THEOREM 8.10 (Razborov and Sherstov [178]). Let Q be a degree-d real polyno-
mial in m variables, where d < m=3: Assume that

F.´/Q.´/ > �1 .´ 2 Z/:
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Then

jQ.´/j 6 16m .´ 2 ZC/:

PROOF. As before, put u D .12; 32; 52; : : : ; .2m � 1/2/: Fix ´ 2 ZC and define
the “interpolating” function f W f0; 1gm ! R by

f .x/ D Q.x1´1 C .1 � x1/u1; : : : ; xm´m C .1 � xm/um/:

In this notation, we know from Lemma 8.8 that jf .x/j 6 4mCd for every x 2

f0; 1gm with jxj < m=3; and our goal is to show that jf .1m/j 6 16m: Since Q has
degree d; the Fourier transform of f is supported on characters of order up to d:

As a result,

jf .1m/j 6 2d

 
m

d

!
max
jxj6d
jf .x/j by Lemma 8.6

6 22mC3d

 
m

d

!
by Lemma 8.8

6 16m:

8.5 A smooth orthogonalizing distribution
The notion of a smooth orthogonalizing distribution, introduced in Chapter 7, plays
a key role in this chapter as well. Let f W f0; 1gn ! f�1;C1g be given. We say that
a distribution µ on f0; 1gn is d -orthogonalizing for f if

E
x�µ

h
f .x/χS.x/

i
D 0 .jS j < d/:

In words, a distribution µ is d -orthogonalizing for f if with respect to µ; the func-
tion f is orthogonal to every character of order less than d:

182



This section focuses on the function

MPm.x/ D

m̂

iD1

4m2_
j D1

xi;j :

Originally defined and studied by Minsky and Papert [153], this function played
an important role in our results in Chapter 4 as well as other results in the
literature [132, 163]. An explicit m-orthogonalizing distribution for MPm is
known [202]. However, our main result requires a �.m/-orthogonalizing distri-
bution for MPm that is additionally smooth, i.e., places substantial weight on all but
a tiny fraction of the points, and the distribution given in [202] severely violates
the latter property. Proving the existence of a distribution that is simultaneously
�.m/-orthogonalizing and smooth is the goal of this section (Theorem 8.11).

We will view an input x 2 f0; 1gn D f0; 1g4m3

to MPm as composed of
blocks: x D .x.1/; : : : ; x.m//; where the i th block is x.i/ D .xi;1; xi;2; : : : ; xi;4m2/:

The proof that is about to start refers to the sets Z; ZC and the function F as defined
in Section 8.4.

THEOREM 8.11 (Razborov and Sherstov [178]). There is a 1
3
m-orthogonalizing

distribution µ for MPm such that µ.x/ > 1
2
16�m 2�n for all inputs x 2 f0; 1gn with

MPm.x/ D �1:

PROOF. Let X be the set of all inputs with MPm.x/ D �1; i.e.,

X D fx 2 f0; 1gn W x.1/
¤ 0; : : : ; x.m/

¤ 0g:
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It suffices to show that the following linear program has optimum at least 1
2
16�m:

variables: ε > 0; µ.x/ > 0 for x 2 f0; 1gn

maximize: ε

subject to:
X

x2f0;1gn

µ.x/MPm.x/χS.x/ D 0 for jS j < m=3;

X
x2f0;1gn

µ.x/ 6 1;

µ.x/ > ε2�n for x 2 X:

(LP1)

The optimum being nonzero, it will follow by a scaling argument that any optimal
solution has

P
µ.x/ D 1: As a result, µ will be the sought probability distribution.

For x 2 f0; 1gn; we let ´.x/ D .jx.1/j; : : : ; jx.m/j/; note that MPm.x/ D

F.´.x//. Since the function MPm is invariant under the action of the group S4m2 �

� � ��S4m2 , in view of Proposition 8.2, the dual of (LP1) can be simplified as follows:

variables: a polynomial Q on Rm of degree < m=3;

η > 0; δ´ > 0 for ´ 2 ZC

minimize: η

subject to:
X
x2X

δ´.x/ > 2n;

F .´/Q.´/ > �η for ´ 2 Z;

F.´/Q.´/ > �ηC δ´ for ´ 2 ZC:

(LP2)

The programs are both feasible and therefore have the same finite optimum. Fix
an optimal solution η; Q;δ´ to (LP2). For the sake of contradiction, assume that
η 6 1

2
16�m: Then jQ.´/j 6 1

2
for each ´ 2 ZC; by Theorem 8.10. From the

constraints of the third type in (LP2) we conclude that δ´ 6 1
2
C η < 1 .´ 2 ZC/:

This contradicts the first constraint. Thus, the optimum of (LP1) and (LP2) is at
least 1

2
16�m:
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8.6 Generalization of Forster’s bound
Using Theorem 8.4, Forster [70] gave a simple proof of the following fundamental
result: for any matrix A D ŒAxy�x2X; y2Y with˙1 entries,

rk˙ A >

p
jX j jY j

kAk
:

Forster et al. [71, Thm. 3] generalized this bound to arbitrary real matrices A ¤ 0:

rk˙ A >

p
jX j jY j

kAk
�min

x;y
jAxyj: (8.16)

Forster and Simon [73, �5] considered a different generalization, inspired by the
notion of matrix rigidity (see, e.g., [175]). Let A be a given˙1 matrix, and let QA be
obtained from A by changing some h entries in an arbitrary fashion .h < jX j jY j/:

Forster and Simon showed that

rk˙
QA >

p
jX j jY j

kAk C 2
p

h
: (8.17)

The above generalizations are not sufficient for our purposes. Before we
can proceed, we need to prove the following “hybrid” bound, which combines the
ideas of [70, 71, 73].

THEOREM 8.12 (Razborov and Sherstov [178]). Let A D ŒAxy�x2X; y2Y be a real
matrix with s D jX j jY j entries .A ¤ 0/: Assume that all but h of the entries of A

satisfy jAxyj > γ ; where h and γ > 0 are arbitrary parameters. Then

rk˙ A >
γ s

kAk
p

s C γh
:
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PROOF. Let r denote the sign-rank of A: Theorem 8.4 supplies a matrix R D ŒRxy�

with

rk R D r; (8.18)

A ıR > 0; (8.19)

kRk∞ 6 1; (8.20)

kRkF D
p

s=r: (8.21)

The crux of the proof is to estimate hA; Ri from below and above. On the one hand,

hA; Ri >
X

x;yW jAxy j>γ

AxyRxy by (8.19)

> γ

 X
x;y

jRxyj � h

!
by (8.19), (8.20)

> γkRk2
F � γh by (8.20)

D
γ s

r
� γh by (8.21).

On the other hand,

hA; Ri 6 kAk � kRk˙ by (2.5)

6 kAk � kRkF
p

r by (2.4), (8.18)

D kAk
p

s by (8.21).

Comparing these lower and upper bounds on hA; Ri yields the claimed estimate of

r D rk˙ A:
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8.7 Main result and circuit consequences
At last, we are in a position to prove our main result. It will be convenient to
first obtain a matrix-analytic formulation and then infer the sought statement on
unbounded-error communication complexity.

THEOREM 8.13 (Razborov and Sherstov [178]). Define

fm.x; y/ D

m̂

iD1

m2_
j D1

.xij ^ yij /:

Then the matrix Œfm.x; y/�x;y has sign-rank 2˝.m/:

PROOF. Let M be the .N; n; MPm/-pattern matrix, where n D 4m3 and N D

176n: Let P be the .N; n;µ/-pattern matrix, where µ is the distribution from The-
orem 8.11. We are going to estimate the sign-rank of M ı P:

By Theorem 8.11, all but a 2�˝.m2/ fraction of the inputs x 2 f0; 1gn satisfy
µ.x/ > 1

2
16�m 2�n: As a result, all but a 2�˝.m2/ fraction of the entries of M ı P

are at least 1
2
16�m 2�n in absolute value. Theorem 8.12 at once implies that

rk˙ M > rk˙ M ı P > min
�

16�m 2�n
p

s

4 kM ı P k
; 2˝.m2/

�
; (8.22)

where s D 2N Cn
�

N
n

�n
denotes the number of entries in M ı P:

We now bound the spectral norm of M ı P precisely as in [204, �6]. Note
first that M ı P is the .N; n;φ/-pattern matrix, where φW f0; 1gn ! R is given by
φ.x/ D MPm.x/µ.x/: Since µ is a 1

3
m-orthogonalizing distribution for MPm; we

have

Oφ.S/ D 0; jS j < m=3: (8.23)
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Since
P

x2f0;1gn jφ.x/j D 1; Proposition 2.1 shows that

j Oφ.S/j 6 2�n; S � f1; 2; : : : ; ng: (8.24)

Theorem 4.3 implies, in view of (8.23) and (8.24), that

kM ı P k 6
p

s � 2�n

�
N

n

��m=6

D 17�m 2�n
p

s:

Along with (8.22), this estimate shows that M has sign-rank at least 2˝.m/: It re-
mains to note that M is a submatrix of Œfcm.x; y/�x;y; where c D d

p
8N=ne D

�.1/:

In the language of communication complexity, we have the following inter-
pretation of our matrix-analytic result.

THEOREM 8.1 (Razborov and Sherstov [178], restated). Define

fm.x; y/ D

m̂

iD1

m2_
j D1

.xij ^ yij /:

Then U.fm/ D ˝.m/:

PROOF. Immediate from Theorems 7.2 and 8.13.

REMARK 8.14 (Razborov and Sherstov [178]). The lower bounds in Theorems 8.1
and 8.13 are essentially optimal. To see this, note that the matrix Œfm.x; y/�x;y has
the same sign pattern as

R D

241

2
�

mY
iD1

�
m2X

j D1

xij yij

�35
x;y

:
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Therefore, the sign-rank of Œfm.x; y/�x;y does not exceed m2m C 1 D 2O.m log m/:

In view of Theorem 7.2, we obtain U.fm/ D O.m log m/:

These results have the following implication in circuit complexity.

THEOREM 8.15 (Razborov and Sherstov [178]). Define

fm.x; y/ D

m̂

iD1

m2_
j D1

.xij ^ yij /:

Let C be a depth-2 threshold circuit, with arbitrary weights at the top gate and
integer weights of absolute value at most W at the bottom gates. If C computes fm;

then it has 2˝.m/=W gates.

PROOF. Immediate from Theorems 7.3 and 8.13.

Theorem 8.15 gives the first exponential lower bound for threshold-of-
majority circuits computing a function in AC0

: It substantially generalizes and
strengthens an earlier result of Krause and Pudlák [132, Thm. 2], who proved an
exponential lower bound for threshold-of-MODr circuits (for any constant r > 2)
computing a function in AC0

: Theorem 8.15 also complements our exponential
lower bound for majority-of-threshold circuits computing functions in AC0

; stated
as Theorem 4.19 above.

8.8 Separation of the polynomial hierarchy from UPPcc

We now explore some consequences of this chapter for complexity classes, intro-
duced in Section 3.4. A ready consequence of our work is the following separation
of the polynomial hierarchy from UPPcc:

THEOREM 8.16 (Razborov and Sherstov [178]).

†cc
2 6� UPPcc; …cc

2 6� UPPcc:
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PROOF. The family ffmg of Theorem 8.13 clearly satisfies ffmg … UPPcc and
hence f:fmg … UPPcc: On the other hand, the memberships ffmg 2 …cc

2 and
f:fmg 2 †cc

2 follow directly from the definition of †cc
2 and …cc

2 :

Several years prior to our work, Forster [70] proved that the inner product
function IPn.x; y/ D

Ln
iD1.xi ^ yi/ has unbounded-error communication com-

plexity �.n/: Since fIPng 2 PSPACEcc
; Forster’s result yields the separation

PSPACEcc
6� UPPcc: Theorem 8.16 of this chapter substantially strengthens it,

showing that even the second level †cc
2 ; …cc

2 of the polynomial hierarchy is not
contained in UPPcc: This settles the open problem due to Babai et al. [23], p. 345,
who asked whether †cc

2 � UPPcc: Observe that Theorem 8.16 is best possible in
that UPPcc trivially contains †cc

0 ; †cc
1 ; …cc

0 ; and …cc
1 :

Recall that UPPcc; the class of communication problems with low sign-
rank, is related to the class PPcc of communication problems with nonnegligible
discrepancy. In Chapter 10, we will see that PPcc is a small subset of UPPcc:

Therefore, Theorem 8.16 strengthens our earlier separations

†cc
2 6� PPcc; …cc

2 6� PPcc;

obtained in Corollary 4.17.

8.9 Sign-rank of DNF formulas
We close this chapter with applications to learning theory. Recall from Section 7.2
that concept classes (equivalently, sign matrices) with low sign-rank admit efficient
learning algorithms in the PAC model. In particular, the current fastest algorithm for
PAC-learning polynomial-size DNF formulas, due to Klivans and Servedio [122],
was obtained precisely by placing an upper bound of expf QO.n1=3/g on the sign-rank
of that concept class. Our work gives a matching lower bound.
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THEOREM 8.17 (Razborov and Sherstov [178]). Let C be the set of all read-once
.hence, linear-size/ DNF formulas f W f0; 1gn ! f�1;C1g: Then

rk˙ C D expf˝.n1=3/g:

PROOF. Let fm.x; y/ be the function from Theorem 8.13, where m D bn1=3c.
Then the matrix Œ�fm.x; y/�x;y has sign-rank expf˝.n1=3/g; and each of its rows
is the truth table of a read-once DNF formula ˚x.y/ D :fm.x; y/:

Learning polynomial-size DNF formulas was the original challenge posed
in Valiant’s paper [213]. More than twenty years later, this challenge remains a
central open problem in computational learning theory despite active research [214,
106, 17, 18, 217, 19, 7, 89, 136, 6, 8, 39, 150, 46, 90, 138, 5, 189, 48, 47, 211, 122].
To account for this lack of progress, several hardness results have been obtained
based on complexity-theoretic assumptions [112, 10]. Theorem 8.17 complements
that line of work by exhibiting an unconditional, structural barrier to the efficient
learning of DNF formulas. In particular, it rules out a 2o.n1=3/-time learning algo-
rithm based on Euclidean embeddings.

While restricted, the Euclidean embedding paradigm is quite rich and cap-
tures many PAC learning algorithms designed to date, with the notable excep-
tion [94, 38] of learning low-degree polynomials over GF.p/: Furthermore, it is
known [108, p. 124] that an unconditional superpolynomial lower bound for learn-
ing polynomial-size DNF formulas in the standard PAC model would imply that
P ¤ NP; thus, such a result is well beyond the reach of the current techniques.
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Chapter 9

Multiparty Communication
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The pattern matrix of Chapter 4 has been adapted to multiparty commu-
nication and has enabled substantial progress in the area. We give a detailed and
integrated treatment of these developments, which we hope will serve as a helpful
and self-contained reference and spur further progress in multiparty communica-
tion. Covered here are the improved lower bounds for the disjointness function due
to Lee and Shraibman [140] and Chattopadhyay and Ada [59], a separation of NPcc

from BPPcc due to David, Pitassi, and Viola [65], and a separation of NPcc from
coNPcc and coMAcc due to Gavinsky and Sherstov [81].

9.1 Introduction
In our development so far, we have focused on two-party communication. The
subject of this chapter is communication with three and more parties, a model in-
troduced by Chandra, Furst, and Lipton [57]. Analogous to the two-party setting,
the multiparty model of communication features k communicating players whose
goal is to compute a given function. More precisely, one considers a Boolean func-
tion f WX1 � � � � � Xk ! f�1;C1g whose arguments x1 2 X1; : : : ; xk 2 Xk

are placed on the foreheads of players 1 through k; respectively. Thus, player i

sees all the arguments except for xi : The players communicate by writing bits
on a shared blackboard, visible to all. Their goal is to compute f .x1; : : : ; xk/

with minimum communication. Analogous to the two-party case, the multiparty
model naturally admits definitions of deterministic D.f /; nondeterministic N.f /;

co-nondeterministic N.�f /; and randomized Rε.f / communication complexity,
along with the corresponding communication classes Pcc

k
; NPcc

k ; coNPcc
k ; BPPcc

k :

We defer the formal details to Section 9.2. The multiparty model has found a va-
riety of applications, including circuit complexity, pseudorandomness, and proof
complexity [225, 93, 25, 179, 30]. This model draws its richness from the generous
overlap in the players’ inputs, which makes it challenging to prove lower bounds.
Many fundamental questions in the multiparty model remain open despite much
research.

In this chapter, we discuss progress in multiparty communication complex-
ity enabled by the pattern matrix method. Generalized discrepancy and the pattern
matrix method, presented in Chapter 4 in the context of two-party communication,
readily adapt to three and more players. This adaptation was formalized by Lee
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and Shraibman [140] and independently by Chattopadhyay and Ada [59], result-
ing in much improved lower bounds for the disjointness function. We present this
development in detail in Sections 9.3 and 9.4.

The next result that we discuss is an explicit separation of the multiparty
communication class NPcc

k from BPPcc
k for up to k D .1�ε/ log n players, obtained

by David, Pitassi, and Viola [65]. Here ε > 0 is an arbitrary constant. Since the
current barrier for explicit lower bounds on multiparty communication complexity
is precisely k D log n; this work matches the state of the art. At the technical
level, the authors of [65] combine the multiparty adaptation of the pattern matrix
method with an ingenious use of the probabilistic method. We present this result in
Section 9.5.

The final result discussed in this chapter, due to Gavinsky and Sherstov [81],
gives an explicit separation of the multiparty communication classes NPcc

k and
coNPcc

k for up to k D .1 � ε/ log n players. Prior to our work, it was unknown
whether these communication classes were equal for any k > 3: We are further
able to give an explicit separation of NPcc

k from coMAcc
k ; the class of Merlin-Arthur

computations [22, 24] that combines the power of nondeterminism and random-
ization. In particular, the latter separation subsumes the separation of NPcc

k from
BPPcc

k by David et al. [65].

9.2 Multiparty models and complexity classes
The basic two-party models of communication, reviewed in Section 3.1, have ana-
logues for three and more players [57]. In the case of k players, one considers a
function f WX1 � � � � � Xk ! f�1;C1g for some finite sets X1; : : : ; Xk: A given
input .x1; : : : ; xk/ 2 X1 � � � � � Xk is distributed among the players by placing
xi on the forehead of player i (for i D 1; : : : ; k). In other words, player i knows
x1; : : : ; xi�1; xiC1; : : : ; xk but not xi : The players can communicate by writing bits
0 and 1 on a shared blackboard, visible to all, according to a protocol established in
advance. Analogous to the two-party case, a protocol is a fixed agreement among
the k players that specifies:
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(1) for each sequence of bits written on the blackboard, an output value �1 or
C1 if the communication is over, and an indication of who is to speak next if
the communication is to continue;

(2) for the player to speak next, a value 0 or 1 that is to be written on the black-
board, based on the current state of the blackboard and the k � 1 parts of the
input visible to the player (namely, x1; : : : ; xi�1; xiC1; : : : ; xk for player i ).

The cost of a protocol is the maximum number of bits written on the black-
board for any input .x1; : : : ; xk/: A protocol is said to compute f deterministically
if the output of the protocol on input .x1; : : : ; xk/ is always f .x1; : : : ; xk/: A pro-
tocol is said to compute f nondeterministically if the protocol always outputs C1

on inputs .x1; : : : ; xk/ 2 f �1.C1/ and outputs �1 at least on some executions for
every input .x1; : : : ; xk/ 2 f �1.�1/: The deterministic (respectively, nondetermin-
istic) communication complexity of f is the least cost of a protocol that computes
f deterministically (respectively, nondeterministically). The multiparty determin-
istic and nondeterministic communication complexities of f are denoted D.f /

and N.f /; respectively. The co-nondeterministic communication complexity of f

is the quantity N.�f /:

In the randomized model, the k parties additionally have access to an un-
limited supply of shared random bits. The cost of a randomized protocol is still the
maximum number of bits written on the blackboard on any input. A randomized
protocol is said to compute f with error ε if on every input .x1; : : : ; xk/; the pro-
tocol produces the correct output f .x1; : : : ; xk/ with probability at least 1� ε: The
ε-error randomized communication complexity of f; denoted Rε.f /; is the least
cost of a randomized protocol that computes f with error ε: The canonical setting
is ε D 1=3; corresponding to bounded-error randomized communication complex-
ity, but any other parameter ε 2 .0; 1=2/ can be considered. As in the two-party
case, it is useful to keep in mind that the error probability of a randomized protocol
can be reduced from 1=3 to any desired constant ε > 0 by executing the protocol
�
�
log 1

ε

�
times and outputting the majority answer. In other words, one has

Rε.f / D O

�
R1=3.f / log

1

ε

�
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by basic probability, and thus the setting ε D 1=3 entails no loss of generality in
the study of bounded-error communication complexity.

The Merlin-Arthur model combines the power of the randomized and non-
deterministic models. A Merlin-Arthur protocol starts with a nondeterministic
guess of c bits appearing on the shared blackboard, where the value of c is fixed
in advance. From that point on, the players communicate using a randomized
protocol. The cost of a Merlin-Arthur protocol is the sum of c and the maxi-
mum number of bits written on the blackboard after the nondeterministic guess.
A Merlin-Arthur protocol is said to compute f with error ε if (1) on every input
.x1; : : : ; xk/ 2 f �1.C1/; the protocol produces the correct output with probabil-
ity at least 1 � ε regardless of the nondeterministic guess; and (2) on every input
.x1; : : : ; xk/ 2 f �1.�1/; there is at least one nondeterministic guess for which the
protocol produces the correct output with probability at least 1 � ε: The ε-error
Merlin-Arthur communication complexity of f; denoted MAε.f /; is the least cost
of a Merlin-Arthur protocol that computes f with error ε: Arthur-Merlin computa-
tions were originally considered in [22, 24].

One defines k-party communication classes analogous to the two-party
communication classes in Section 3.4. A family of functions fnW .f0; 1gn/k !

f�1;C1g; for n D 1; 2; 3; : : : ; belongs to Pcc
k

if and only if D.f / 6 logc n for
some constant c > 1 and all n > c: The multiparty classes NPcc

k ; BPPcc
k ; MAcc

k

are defined analogously with regard to nondeterministic, 1
3
-error randomized, and

1
3
-error Merlin-Arthur communication complexity. A family of functions ffng be-

longs to coNPcc
k if and only if f:fng 2 NPcc

k : Similarly, a family of functions ffng

belongs to coMAcc
k if and only if f:fng 2 MAcc

k :

The multiparty communication models reviewed above are known as
number-on-forehead models in reference to how the input is distributed among the
k players. Other generalizations of two-party communication to multiple parties
have been considered in the literature, such as number-in-hand models [137].

9.3 Discrepancy and generalized discrepancy
The two-party discrepancy method and its generalization, discussed in Sections 3.2
and 3.3, adapt in a natural way to the multiparty setting. Fix a function f WX1 �
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� � � �Xk ! f�1;C1g and a distribution µ on X1 � � � � �Xk: The discrepancy of f

with respect to µ is defined as

discµ.f / D max
φ1;:::;φk

ˇ̌̌̌
ˇ̌̌̌ X

.x1;:::;xk/
2X1�����Xk

ψ.x1; : : : ; xk/

kY
iD1

φi.x1; : : : ; xi�1; xiC1; : : : ; xk/

ˇ̌̌̌
ˇ̌̌̌ ;

whereψ.x1; : : : ; xk/ D f .x1; : : : ; xk/µ.x1; : : : ; xk/ and the maximum ranges over
all functions φi WX1 � � � �Xi�1 �XiC1 � � � �Xk ! f0; 1g; for i D 1; 2; : : : ; k: Note
that for k D 2; this definition is identical to the one given previously for the two-
party model. We put

disc.f / D min
µ
fdiscµ.f /g:

We identify a function f WX1 � � � � � Xk ! f�1;C1g with its communication
tensor F.x1; : : : ; xk/ D Œf .x1; : : : ; xk/�x1;:::;xk

and speak of the discrepancy of F

and f interchangeably, and likewise for other complexity measures such as Rε.f /:

This identification is convenient because it allows us to use the tensor notation of
Section 2.4, such as the Hadamard product A ı B or inner product hA; Bi:

Discrepancy is difficult to analyze as defined. Typically, one uses the follow-
ing well-known estimate, derived by repeated applications of the Cauchy-Schwarz
inequality.

THEOREM 9.1 (Discrepancy estimate [25, 62, 173]). Fix f WX1 � � � � � Xk !

f�1;C1g and a probability distribution µ on X1 � � � � � Xk: Put ψ.x1; : : : ; xk/ D

f .x1; : : : ; xk/µ.x1; : : : ; xk/: Then

�
discµ.f /

jX1j � � � jXkj

�2k�1

6 E
x0

12X1

x1
12X1

� � � E
x0

k�1
2Xk�1

x1
k�1

2Xk�1

ˇ̌̌̌
ˇ̌ E
xk2Xk

Y
´2f0;1gk�1

ψ.x
´1

1 ; : : : ; x
´k�1

k�1
; xk/

ˇ̌̌̌
ˇ̌ :
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Observe that for k D 2 players, Theorem 9.1 reduces to its two-party ana-
logue, Lemma 3.3.

For a function f WX1 � � � � � Xk ! f�1;C1g and a distribution µ over
X1�� � ��Xk; the ε-errorµ-distributional communication complexity D

µ
ε .f / is the

least cost of a deterministic protocol for f whose probability of error with respect
to µ is at most ε: Since a randomized protocol can be viewed as a probability
distribution over deterministic protocols, we immediately have that

Rε.f / > max
µ

Dµ
ε .f /: (9.1)

We are now prepared to state the discrepancy method for multiparty communica-
tion, which is identical to its two-party counterpart.

THEOREM 9.2 (Discrepancy method; see [137]). For every function f WX1 � � � � �

Xk ! f�1;C1g; every distribution µ on X1 � � � � �Xk; and every γ 2 .0; 1/;

R1=2�γ=2 > D
µ
1=2�γ=2

.f / > log
� γ

discµ.f /

�
:

The two-party generalized discrepancy method, given by Theorem 3.7, ex-
tends word-for-word to the multiparty model. This extension was formalized by
Lee and Shraibman [140] and independently by Chattopadhyay and Ada [59].

THEOREM 9.3 (Multiparty generalized discrepancy [140, 59]). Let F WX1 � � � � �

Xk ! f�1;C1g be a given sign tensor, for some finite sets X1; : : : ; Xk: Then for
all sign tensors H WX1 � � � � �Xk ! f�1;C1g and all probability tensors P;

2Rε.F / >
hF; H ı P i � 2ε

discP .H/
: (9.2)

The presentation below differs slightly from the proofs in [140, 59] and is
meant to emphasize the direct analogy between the two-party and multiparty cases.
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PROOF OF THEOREM 9.3. Put c D Rε.F /: Equation (9.1) shows that there exists
a deterministic protocol ˘ WX1 � � � � � Xk ! f�1;C1g with communication cost
at most c and PP ŒF .x1; : : : ; xk/ ¤ ˘.x1; : : : ; xk/� 6 ε: Then

h˘; H ı P i > hF; H ı P i � 2ε:

On the other hand, the ordinary discrepancy method (Theorem 9.2) states that

h˘; H ı P i 6 2c discP .H/:

Comparing the last two inequalities completes the proof.

9.4 Lower bounds for the disjointness function
In this section, we present an extension of the pattern matrix method to the multi-
party model. This extension, formalized in [58, 140, 59], closely follows the com-
binatorial analysis of pattern matrices in Section 4.8.

We start with some notation. Fix a function φW f0; 1gt ! R and an inte-
ger n with t j n: Define the .k; n; t;φ/-pattern tensor as the k-argument func-
tion AW f0; 1gt.n=t/k�1

� Œn=t �t � � � � � Œn=t �t ! R given by A.x; V1; : : : ; Vk�1/ D

φ.xjV1;:::;Vk�1
/; where we define

xjV1;:::;Vk�1
D
�
x1;V1Œ1�;:::;Vk�1Œ1�; : : : ; xt;V1Œt�;:::;Vk�1Œt�

�
2 f0; 1gt

and Vj Œi � denotes the i th element of the t -dimensional vector Vj : Note that we index
the string x by viewing it as a k-dimensional array of t � .n=t/ � � � � � .n=t/ D

t .n=t/k�1 bits. This definition generalizes the pattern matrices of Section 4.8 to
higher dimensions.

We are ready for the first result of this section, namely, an extension of the
two-party Theorem 4.23 to the multiparty model. This extension was originally
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obtained by Chattopadhyay [58] for slightly different tensors and has since been
revisited in one form or another [140, 59].

THEOREM 9.4 (Discrepancy of pattern tensors [58, 140, 59]). Fix a function
hW f0; 1gt ! f�1;C1g and a probability distribution µ on f0; 1gt : Let n be a
given integer, t j n: Let H be the .k; n; t; f /-pattern tensor and let P be the
.k; n; t; 2�t.n=t/k�1Ct.n=t/�t.k�1/µ/-pattern tensor. Let d > 0 be an integer such
that cµh.S/ D 0 whenever jS j < d: If n > 4et2.k � 1/22k�1

=d; then

discP .H/ 6 2�d=2k�1

:

PROOF (adapted from [58, 140, 59]). Consider the function ψW f0; 1gt ! R given
by ψ.´/ � f .´/µ.´/: By Theorem 9.1,

discP .H/2k�1

6 2t2k�1

E
V
jΓ .V/j; (9.3)

where we put V D .V 0
1 ; V 1

1 ; : : : ; V 0
k�1

; V 1
k�1

/ and

Γ .V/ D E
x

"
ψ
�
xjV 0

1 ;V 0
2 ;:::;V 0

k�1

�
œ

.�/

Y
´2f0;1gk�1nf0k�1g

ψ
�
xj

V
´1

1 ;V
´2

2 ;:::;V
´k�1

k�1

�
“

.�/

#
:

For a fixed choice of V; define sets

A D
n
.i; V 0

1 Œi �; : : : ; V 0
k�1Œi �/ W i D 1; 2; : : : ; t

o
;

B D
n
.i; V

´1

1 Œi �; : : : ; V
´k�1

k�1
Œi �/ W i D 1; 2; : : : ; t I ´ 2 f0; 1gk�1

n f0k�1
g

o
:
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Clearly, A and B are the sets of variables featured in the expressions (�) and (�)
above, respectively. To analyze Γ .V/; we prove two key claims analogous to those
in the two-party Theorem 4.23.

CLAIM 9.5. Assume that jA \ Bj 6 d � 1: Then Γ .V/ D 0:

PROOF. Immediate from the fact that the Fourier transform of ψ is supported on
characters of order d and higher.

CLAIM 9.6. Assume that jA \ Bj D i: Then jΓ .V/j 6 2i2k�1�t2k�1

:

PROOF. Proposition 4.22 shows that jΓ .V/j 6 2�t2k�1

2t2k�1�jA[Bj: Furthermore,
it is straightforward to verify that jA [ Bj > t2k�1 � jA \ Bj 2k�1:

In view of Claims 9.5 and 9.6, inequality (9.3) simplifies to

discP .H/2k�1

6
tX

iDd

2i2k�1

PŒjA \ Bj D i �:

It remains to bound the probability PŒjA\Bj D i �: For a fixed element a; we have
PŒa 2 B j a 2 A� 6 .k � 1/t=n by the union bound. Moreover, given two distinct
elements a; a0 2 A; the corresponding events a 2 B and a0 2 B are independent.
Therefore,

PŒjA \ Bj D i � 6

 
t

i

!�
.k � 1/t

n

�i

;

which yields the desired bound on discP .H/:

We now present an adaptation of the two-party Theorem 4.26 to the mul-
tiparty model, obtained by Lee and Shraibman [140] and independently by Chat-
topadhyay and Ada [59].
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THEOREM 9.7 (Communication complexity of pattern tensors [140, 59]). Let
f W f0; 1gt ! f�1;C1g be given with deg1=3.f / D d > 1: Let n be a given in-
teger, t j n: Let F be the .k; n; t; f /-pattern tensor. If n > 4et2.k � 1/22k�1

=d;

then

R1=3.F / > ˝

�
d

2k

�
:

PROOF (adapted from [140, 59]). The proof is identical to that of the two-party
Theorem 4.26, with pattern matrices replaced by pattern tensors. By Theorem 4.5,
there is a function hW f0; 1gt ! f�1;C1g and a probability distribution µ on f0; 1gt

such that

cµh.S/ D 0; jS j < d; (9.4)X
´2f0;1gt

f .´/µ.´/h.´/ >
1

3
: (9.5)

Letting P be the .k; n; t; 2�t.n=t/k�1Ct.n=t/�t.k�1/µ/-pattern tensor and H the
.k; n; t; h/-pattern tensor, we obtain from (9.4) and Theorem 9.4 that

discP .H/ 6 2�d=2k�1

: (9.6)

At the same time, one sees from (9.5) that

hF; H ı P i >
1

3
: (9.7)

The theorem now follows from (9.6), (9.7), and the generalized discrepancy method
(Theorem 9.3).
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These generalizations give an improved lower bound on the k-party com-
munication complexity of the disjointness function f .x/ D

Wn
j D1

Vk
iD1 xi;j ; where

player i sees all the inputs except for xi;1; : : : ; xi;n:

COROLLARY 9.8 (Multiparty complexity of disjointness [140, 59]). Define
f .x/ D

Wn
j D1

Vk
iD1 xi;j : Then

R1=3.f / > n�.1=k/2��.2k/:

PROOF (adapted from [140, 59]). Let t be an integer to be fixed later. Recall from
Theorem 2.5 that deg1=3.ORt/ > α

p
t for some constant α > 0: Letting m be

the smallest multiple of t such that m > 4et2.k � 1/22k�1

=.α
p

t /; it follows by
Theorem 9.7 that the .k; m; t; ORt/-pattern tensor has bounded-error randomized
communication complexity ˝.

p
t=2k/: It remains to set t to be the largest integer

such that t .m=t/k�1 6 n; thereby assuring that the .k; m; t; ORt/-pattern tensor is
a subtensor of f:

In a recent result, Beame and Huynh-Ngoc [29] build on this line of re-
search to give stronger lower bounds for the disjointness function for certain ranges
of k: Also obtained in [29] is the first polynomial lower bound on the multiparty
communication complexity of an AC0 function, for up to k D ε log n players.

9.5 Separation of NPcc from BPPcc

Since the disjointness function trivially belongs to NPcc
k ; Corollary 9.8 separates

the communication classes NPcc
k and BPPcc

k for up to k D �.log log n/ parties.
In this section, we present a separation [64, 65] of these classes for exponentially
more players, up to k D .1 � ε/ log n: The crucial insight in this new work is to
redefine the projection operator xjV1;:::;Vk�1

from Section 9.4 using the probabilis-
tic method. This removes the key bottleneck in the previous analyses [140, 59].
We will present the result in two stages, starting with an existential argument due
David and Pitassi [64] followed by its derandomization due to David, Pitassi, and
Viola [65].
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We start with some notation. Fix natural numbers n; m with n > m:

We let the symbol
�

Œn�

m

�
stand for the family of all m-element subsets of Œn�: Let

ψW f0; 1gm ! R be a given function with
P

´2f0;1gm jψ.´/j D 1: Let d de-
note the least order of a nonzero Fourier coefficient of ψ: Fix a Boolean function
hW f0; 1gm ! f�1;C1g and a distribution µ on f0; 1gm such thatψ.´/ � h.´/µ.´/:

For a mapping αW .f0; 1gn/k !
�

Œn�

m

�
; define a .k C 1/-party communication

problem HαW .f0; 1gn/kC1 ! f�1;C1g by H.x; y1; : : : ; yk/ D h.xjα.y1;:::;yk//:

Analogously, define a distribution Pα on .f0; 1gn/kC1 by Pα.x; y1; : : : ; yk/ D

2�.kC1/nCmµ.xjα.y1;:::;yk//:

THEOREM 9.9 (David and Pitassi [64]). Assume that n > 16em22k: Then for a
uniformly random choice of αW .f0; 1gn/k !

�
Œn�

m

�
;

E
α

h
discPα.Hα/

2k
i

6 2�n=2
C 2�d2kC1:

PROOF (adapted from [64]). By Theorem 9.1,

discPα.Hα/
2k

6 2m2k

E
Y
jΓ .Y /j; (9.8)

where we put Y D .y0
1 ; y1

1 ; : : : ; y0
k
; y1

k
/ and

Γ .Y / D E
x

24 Y
´2f0;1gk

ψ
�
xjα.y

´1
1 ;y

´2
2 ;:::;y

´k
k /

�35 :

For a fixed choice of Y; we will use the shorthand S´ D α.y
´1

1 ; : : : ; y
´k

k
/: To analyze

Γ .Y /; we prove two key claims analogous to those in Theorem 4.23.

CLAIM 9.10. Assume that j
S

S´j > m2k � d2k�1: Then Γ .Y / D 0:

PROOF. If j
S

S´j > m2k � d2k�1; then some S´ must feature more than m � d

elements that do not occur in
S

u¤´ Su: But this forces Γ .Y / D 0 since the Fourier
transform of ψ is supported on characters of order d and higher.
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CLAIM 9.11. For every Y; jΓ .Y /j 6 2�j
S

S´j:

PROOF. Immediate from Proposition 4.22.

In view of (9.8) and Claims 9.10 and 9.11, we have

E
α

h
discPα.Hα/

2k
i

6
m2k�mX

iDd2k�1

2i P
Y;α

hˇ̌̌[
S´

ˇ̌̌
D m2k

� i
i

:

It remains to bound the probabilities in the last expression. With probability at
least 1 � k2�n over the choice of Y , we have y0

i ¤ y1
i for each i D 1; 2; : : : ; k:

Conditioning on this event, the fact that α is chosen uniformly at random means that
the 2k sets S´ are distributed independently and uniformly over

�
Œn�

m

�
: A calculation

now reveals that

P
Y;α

hˇ̌̌[
S´

ˇ̌̌
D m2k

� i
i

6 k2�n
C

 
m2k

i

!�
m2k

n

�i

6 k2�n
C 8�i ;

where the last step uses the fact that i > d2k�1:

We are ready to present a nonexplicit separation of nondeterministic and
randomized multiparty communication complexity.

THEOREM 9.12 (David and Pitassi [64]). Let k 6 .1 � ε/ log2 n; where ε > 0 is
a given constant. Then there exists a function FαW .f0; 1gn/kC1 ! f�1;C1g with
N.Fα/ D O.log n/ but R1=3.Fα/ D n˝.1/: In particular,

NPcc
k 6� BPPcc

k :

PROOF (adapted from [64]). Let m D bnζ c for a sufficiently small constant ζ D
ζ .ε/ > 0: Recall from Theorem 2.5 that deg1=3.ORm/ D �.

p
m/: As a result,
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Theorem 4.5 guarantees the existence of a function ψW f0; 1gm ! R such that:

Oψ.S/ D 0 for jS j < �.
p

m/;X
´2f0;1gm

jψ.´/j D 1;

X
´2f0;1gm

ψ.´/ORm.´/ >
1

3
:

Fix a function hW f0; 1gm ! f�1;C1g and a distribution µ on f0; 1gm such that
ψ.´/ � h.´/µ.´/: For a mapping αW .f0; 1gn/k !

�
Œn�

m

�
; let Hα and Pα be as defined

at the beginning of this section. Then Theorem 9.9 shows the existence of α such
that

discPα.Hα/ 6 2�˝.
p

m/:

Using the properties of ψ; one readily verifies that hH ı Pα; Fαi > 1=3; where
FαW .f0; 1gn/kC1 ! f�1;C1g is given by Fα.x; y1; : : : ; yk/ D ORm.xjα.y1;:::;yk//:

By the generalized discrepancy method (Theorem 9.3),

R1=3.Fα/ > ˝.
p

m/ D n˝.1/:

On the other hand, Fα has nondeterministic complexity O.log n/: Namely,
Player 1 (who knows y1; : : : ; yk) nondeterministically selects an element i 2

α.y1; : : : ; yk/ and announces i: Player 2 (who knows x) then announces xi as the
output of the protocol.

We will now sketch an explicit construction of the function whose existence
is given by Theorem 9.12.

THEOREM 9.13 (David, Pitassi, and Viola [65]). Let k 6 .1 � ε/ log2 n; where
ε > 0 is a given constant. Then there exists an .explicitly given/ function
F W .f0; 1gn/kC1 ! f�1;C1g with N.F / D O.log n/ but R1=3.F / D n˝.1/: In
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particular,

NPcc
k 6� BPPcc

k :

PROOF SKETCH (adapted from [65]). The proof proceeds by a derandomization of
the choice of α in Theorem 9.12. Instead of working with a family fHαg of func-
tions, each given by Hα.x; y1; : : : ; yk/ D h.xjα.y1;:::;yk//; one posits a single func-
tion H.α; x; y1; : : : ; yk/ D h.xjα.y1;:::;yk//; where the new argument α is known
to all players and ranges over a small, explicitly given subset A of all mappings
.f0; 1gn/k !

�
Œn�

m

�
: By choosing A to be pseudorandom, one arrives at the same

qualitative conclusion as in Theorem 9.9.

9.6 Analyzing nondeterministic and Merlin-Arthur complexity
In this section and the next, we present a separation of nondeterministic communi-
cation complexity from co-nondeterministic and further from Merlin-Arthur com-
plexity. A starting point in our discussion is a well-known combinatorial fact about
multiparty protocols. Consider a function f WX1�� � ��Xk ! f�1;C1g: A cylinder
intersection is any function χ WX1 � � � � �Xk ! f0; 1g of the form

χ .x1; : : : ; xk/ D

kY
iD1

φi.x1; : : : ; xi�1; xiC1; : : : ; xk/;

for some functions φi WX1�� � ��Xi�1�XiC1�� � ��Xk ! f0; 1g; i D 1; 2; : : : ; k:

Cylinder intersections play a basic role in the study of communication complex-
ity. First of all, a low-cost deterministic protocol partitions the sets f �1.�1/ and
f �1.C1/ into a small number of cylinder intersections:

FACT 9.14 (see Kushilevitz and Nisan [137]). Let f WX1 � � � � � Xk ! f�1;C1g

be a given function, c D D.f /: Then there exist cylinder intersections χ1; : : : ;χ2c
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such that

X
χi.x/ �

1 � f .x/

2
:

An analogous statement holds for nondeterministic complexity:

FACT 9.15 (see Kushilevitz and Nisan [137]). Let f WX1 � � � � � Xk ! f�1;C1g

be a given function, c D N.f /: Then there exist cylinder intersections χ1; : : : ;χ2c

such that

f .x/ D �1 ,

X
χi.x/ > 1:

We are now ready for the first step of our proof, a technique for lower bounds
on nondeterministic communication complexity inspired by the generalized dis-
crepancy method.

THEOREM 9.16 (Gavinsky and Sherstov [81]). Let F WX ! f�1;C1g be given,
where X D X1 � � � � � Xk: Fix a function H WX ! f�1;C1g and a probability
distribution P on X: Put

α D P.F �1.�1/ \H �1.�1//;

β D P.F �1.�1/ \H �1.C1//;

Q D log
α

βC discP .H/
:

Then

N.F / > Q (9.9)
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and

MA1=3.F / > min
�

˝.
p

Q/; ˝

�
Q

logf2=αg

��
: (9.10)

PROOF. Put c D N.F /: Fix cylinder intersections χ1;χ2; : : : ;χ2c WX ! f0; 1g

guaranteed by Fact 9.15. By the definition of discrepancy,

˝P
χi ;�H ı P

˛
6
X
j
˝
χi ;�H ı P

˛
j 6 2c discP .H/:

On the other hand,
P
χi ranges between 1 and 2c on F �1.�1/ and vanishes on

F �1.C1/: Therefore,

˝P
χi ;�H ı P

˛
> α � 2cβ:

These two inequalities force (9.9).

We now turn to the Merlin-Arthur model. Let c D MA1=3.F / and δ D
α2�c�1: The first step is to improve the error probability of the Merlin-Arthur pro-
tocol by repetition from 1=3 to δ: Specifically, following Klauck [115] we observe
that there exist randomized protocols F1; : : : ; F2c WX ! f0; 1g; each a random vari-
able of the coin tosses and each having communication cost c0 D O.c logf1=δg/;
such that the sum

X
EŒFi �

ranges in Œ1 � δ; 2c� on F �1.�1/ and in Œ0;δ2c� on F �1.C1/: As a result,

DX
EŒFi �;�H ı P

E
> α.1 � δ/ �β2c

� .1 � α �β/δ2c: (9.11)
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Since a randomized protocol X ! f0; 1g of cost c0 is a probability distribution over
deterministic protocols X ! f0; 1g of cost c0; and since by Fact 9.14 every such
deterministic protocol is the sum of at most 2c cylinder intersections, it follows
from the definition of discrepancy that

DX
EŒFi �;�H ı P

E
6

2cX
iD1

2c0

discP .H/ D 2cCc0

discP .H/: (9.12)

The bounds in (9.11) and (9.12) force (9.10).

Since sign tensors H and �H have the same discrepancy under any given
distribution, we have the following alternate form of Theorem 9.16.

COROLLARY 9.17 (Gavinsky and Sherstov [81]). Let F WX ! f�1;C1g be given,
where X D X1 � � � � � Xk: Fix a function H WX ! f�1;C1g and a probability
distribution P on X: Put

α D P.F �1.C1/ \H �1.C1//;

β D P.F �1.C1/ \H �1.�1//;

Q D log
α

βC discP .H/
:

Then

N.�F / > Q

and

MA1=3.�F / > min
�

˝.
p

Q/; ˝

�
Q

logf2=αg

��
:
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9.7 Separation of NPcc from coNPcc and coMAcc

Using the results of the previous section, we will now obtain the desired separations
in communication complexity. Following the organization of Section 9.5, we will
first give an existential argument and only then sketch an explicit separation. We
start by deriving a suitable analytic property of the OR function.

THEOREM 9.18 (Gavinsky and Sherstov [81]). There is a function ψW f0; 1gm ! R
such that:

X
´2f0;1gm

jψ.´/j D 1; (9.13)

Oψ.S/ D 0; jS j < �.
p

m/; (9.14)

ψ.0/ >
1

6
: (9.15)

PROOF. Recall from Theorem 2.5 that deg1=3.ORm/ D ˝.
p

m/: By Theorem 4.5,
there is a function ψW f0; 1gm ! R that obeys (9.13), (9.14), and additionally satis-
fies

X
´2f0;1gm

ψ.´/ORm.´/ >
1

3
:

As a result,

2ψ.0/ D
X

´2f0;1gm

ψ.´/fORm.´/C 1g D
X

´2f0;1gm

ψ.´/ORm.´/ >
1

3
;

where the second equality follows from (9.14).

In what follows, it will be convenient to reinstate the notation of Sec-
tion 9.5, due to David and Pitassi [64]. Fix integers n; m with n > m: Let
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ψW f0; 1gm ! R be a given function with
P

´2f0;1gm jψ.´/j D 1: Let d de-
note the least order of a nonzero Fourier coefficient of ψ: Fix a Boolean function
hW f0; 1gm ! f�1;C1g and a distribution µ on f0; 1gm such thatψ.´/ � h.´/µ.´/:

For a mapping αW .f0; 1gn/k !
�

Œn�

m

�
; define a .k C 1/-party communication

problem HαW .f0; 1gn/kC1 ! f�1;C1g by Hα.x; y1; : : : ; yk/ D h.xjα.y1;:::;yk//:

Analogously, define a distribution Pα on .f0; 1gn/kC1 by Pα.x; y1; : : : ; yk/ D

2�.kC1/nCmµ.xjα.y1;:::;yk//:

We are now in position to give the promised existential separation. It may
be helpful to compare the proof to follow with David and Pitassi’s proof of Theo-
rem 9.12.

THEOREM 9.19 (Gavinsky and Sherstov [81]). Let k 6 .1� ε/ log n; where ε > 0

is any given constant. Then there exists a function FαW .f0; 1gn/kC1 ! f�1;C1g

such that N.Fα/ D O.log n/ and MA1=3.�Fα/ D n˝.1/: In particular,

NPcc
k › coMAcc

k ; NPcc
k ¤ coNPcc

k :

PROOF. Let m D bnδc for a sufficiently small constant δ D δ.ε/ > 0: Let
ψW f0; 1gm ! R be as guaranteed by Theorem 9.18. For a mapping αW .f0; 1gn/k !�

Œn�

m

�
; let Hα and Pα be defined in terms of ψ as described earlier in this section.

Then Theorem 9.9 shows the existence of α such that

discPα.Hα/ 6 2�˝.
p

m/: (9.16)

Define FαW .f0; 1gn/kC1 ! f�1;C1g by Fα.x; y1; : : : ; yk/ D ORm.xjα.y1;:::;yk//:

It is clear from the properties of ψ that

Pα.F
�1
α .C1/ \H �1

α .C1// >
1

6
; (9.17)

Pα.F
�1
α .C1/ \H �1

α .�1// D 0: (9.18)
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The sought lower bound on the Merlin-Arthur complexity of�Fα now follows from
(9.16)–(9.18) and Corollary 9.17.

On the other hand, as in the proof of David and Pitassi’s Theorem 9.12,
the function Fα has an efficient nondeterministic protocol. Namely, player 1 (who
knows y1; : : : ; yk) nondeterministically selects an element i 2 α.y1; : : : ; yk/ and
writes i on the shared blackboard. Player 2 (who knows x) then announces xi as the
output of the protocol. This yields the desired upper bound on the nondeterministic
complexity of Fα:

The probabilistic choice of α in Theorem 9.19 admits the same derandom-
ization as Theorem 9.12, yielding our main result.

THEOREM 9.20 (Gavinsky and Sherstov [81]). Let k 6 .1� ε/ log n; where ε > 0

is any given constant. Then there is an .explicitly given/ function F W .f0; 1gn/k !

f�1;C1g with N.F / D O.log n/ and MA1=3.�F / D n˝.1/: In particular,

NPcc
k › coMAcc

k ; NPcc
k ¤ coNPcc

k :

PROOF. Identical to the derandomization given by Theorem 9.13.
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Chapter 10

Relations and Separations
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In this chapter, we fully characterize the relations and gaps among three
complexity measures of a communication problem: product discrepancy, nonprod-
uct discrepancy, and sign-rank. As a corollary, we prove that the containment
PPcc

� UPPcc is proper. We further prove that product discrepancy is equiva-
lent to the statistical query dimension. Finally, we solve an open problem due to
Kushilevitz and Nisan [137], exhibiting a gap of �.1/ versus �.n/ between the
product and nonproduct distributional complexities of a function on n-bit strings.

10.1 Introduction
In previous chapters, we demonstrated the power of matrix analysis, duality, ap-
proximation theory, the Fourier transform, and other analytic methods in the study
of communication complexity. In this concluding chapter on communication, we
apply the analytic approach in yet another way. The work in this chapter revolves
around five key complexity measures of a sign matrix A; all reviewed in the intro-
ductory Chapters 2 and 3. The first is the discrepancy disc.A/; which is among the
most important quantities in communication. The second quantity that we consider
is the product discrepancy disc�.A/; defined as the minimum discrepancy of A un-
der product distributions. The third complexity measure is the sign-rank rk˙.A/;

a key notion in unbounded-error communication complexity. The final two com-
plexity measures of a sign matrix discussed here are the statistical query dimension
sq.A/ and the margin complexity mc.A/; both originating in learning theory.

Prior to our work, Ben-David et al. [35] proved that the sign-rank of a
sign matrix A is essentially bounded by O.1= mc.A/2/: Furthermore, Linial and
Shraibman [145] showed that the margin complexity and discrepancy are essen-
tially equivalent notions, in that mc.A/ and 1= disc.A/ are always within a factor of
8 of each other. Here, we complete these two results to the picture in Figure 10.1.

We will now traverse this schematic left to right, giving more precise state-
ments. Our first result, proved in Section 10.3, states that the statistical query di-
mension and product discrepancy are essentially equivalent notions in that sq.A/

and 1= disc�.A/ are polynomially related for all A: Next, we prove in Section 10.4
that the statistical query dimension sq.A/ of a sign matrix is bounded by 2.rk˙ A/2:

We further show that the gap between the two quantities can be essentially arbitrary.
In particular, we prove that sign matrices exist of order N with statistical query
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detailed picture:

arbitrary gap
achievable
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We further show that the gap between the two quantities can be essentially arbi-
trary. In particular, we prove that sign matrices exist of order N with statistical
query dimension O.1/ and sign-rank N 1"ε: As an application of our findings, we
strengthen the current upper bound on the statistical query dimension of halfspaces
in n dimensions, due to Blum et al. [21], from nO.1/ to a near-tight 2.n C 1/2:

Continuing in Section 10.5, we exhibit sign matrices with an exponential
gap between their sign-rank and the reciprocal of its discrepancy. Independently
of the author, Buhrman et al. [30] exhibited another sign matrix with this prop-
erty, which we also present in this chapter. As an application, this exponential gap
between the sign-rank and the reciprocal of the discrepancy establishes the strict
containment PPcc ! UPPcc; which was open to prove since the formulation of
these classes by Babai et al. [11].

We conclude this chapter in Section 10.6 by resolving a related open prob-
lem due to Kushilevtiz and Nisan [92]. These authors asked whether the equality

R1=3.f / D max
µ

fDµ
1=3.f /g;

given by Yao’s minimax principle (Theorem 3.1), is approximately preseved if the
maximum is taken over product distributions only, rather than all distributions µ:

We give the strongest possible answer to this question, proving the existence of a
function f W f0; 1gn"f0; 1gn ! f#1; C1g whose maximum product and nonproduct
distributional complexities O.1/ and !.n/; respectively. Furthermore, the function
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dimension O.1/ and sign-rank ˝.N 1�ε/: As an application of our findings, we
strengthen the current upper bound on the statistical query dimension of halfspaces
in n dimensions, due to Blum et al. [36], from nO.1/ to a near-tight 2.nC 1/2:

Continuing in Section 10.5, we exhibit a sign matrix A with an exponen-
tial gap between rk˙.A/ and 1= disc.A/: Independently of the author, Buhrman et
al. [53] exhibited another sign matrix with such a gap, which we also present in
this chapter. This exponential gap between the sign-rank and the reciprocal of the
discrepancy establishes the strict containment PPcc ( UPPcc; which was open to
prove since the introduction of these classes by Babai et al. [23].

We conclude this chapter in Section 10.6 by resolving a related open prob-
lem due to Kushilevitz and Nisan [137]. These authors asked whether the equality

R1=3.f / D max
µ
fD

µ
1=3

.f /g;

given by Yao’s minimax principle (Theorem 3.1), is approximately preserved if
the maximum is taken over product distributions only, rather than all distributions
µ: We give a strong negative answer to this question, proving the existence of a
function f W f0; 1gn � f0; 1gn ! f�1;C1g whose maximum product and nonprod-
uct distributional complexities are O.1/ and �.n/; respectively. The function f

in question is particularly hard in that it has essentially the smallest possible dis-
crepancy and the maximum unbounded-error complexity, despite the fact that its
distributional complexity is constant under all product distributions.

The placement of this chapter at the end of Part I on communication com-
plexity and just before Part II on learning theory is no accident. Indeed, an impor-
tant theme in our results and methods here is the close interplay between commu-
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nication complexity and learning theory. This relationship between communication
and learning is natural since a sign matrix can be viewed both as a communication
problem and a learning problem. We will see more such instances in Part II of this
thesis.

10.2 Technical preliminaries
We start with some combinatorial and learning-theoretic background. The reader
may find it useful to review the definitions and results of Section 2.5 on fundamen-
tals of learning theory before reading on.

The matrix family Z .N; c/ � f�1;C1gN �N ; due to Zarankiewicz [227],
is the family of sign matrices that contain no submatrix of size c� c with all entries
equal to C1: A classical result due to Bollobás [43] states that Z .N; c/ contains a
considerable fraction of the matrices in f�1;C1gN �N : On the other hand, Alon et
al. [13] proved that all but a tiny fraction of the matrices in f�1;C1gN �N have high
sign-rank. These two results were combined in the work of Ben-David et al. [35] to
the following effect.

THEOREM 10.1 (Ben-David et al. [35, Thm. 12]). Let c > 2 be a fixed integer. Then
all but a vanishing fraction of the matrices in Z .N; c/ have sign-rank ˝.N 1� 2

c /:

A glance at the proof of Ben-David et al. [35] reveals the following some-
what more delicate result, which is what we will need in this chapter.

THEOREM 10.2 (Ben-David et al. [35], implicit). Let α > 0 be a suitably small
absolute constant. Let c be a given integer with

2 6 c 6 α
�

log N

log log N

�1=2

:

Then all but a vanishing fraction of the matrices in Z .N; c/ have sign-rank at least
αN 1� 2

c :
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Apart from Zarankiewicz matrices, we will need a bound on the statistical
query dimension of a concept class in terms of its Vapnik-Chervonenkis dimension.

LEMMA 10.3 (Sherstov [197]). Let C be a concept class. Then

sq.C / 6 2O.vc.C //:

PROOF. Let sq.C / D d > 2: Our goal is to show that vc.C / D ˝.log d/: By
definition of the statistical query dimension, there is a distribution µ and functions
f1; : : : ; fd 2 C such that

�µ.fi ; fj / >
1

2
�

1

2d

for all i ¤ j: In particular, �µ.fi ; fj / > 1=5: Thus, Proposition 2.15 shows that
learning C to accuracy 1=10 and confidence 1=2 requires m > ˝.log d/ examples.
Yet by Theorem 2.14, the number of examples needed is at most m 6 O.vc.C //:

Comparing these two estimates completes the proof.

10.3 SQ dimension vs. product discrepancy
The purpose of this section is to prove the equivalence of two well-studied notions,
which were independently defined one in learning theory and the other in commu-
nication complexity. The notions in question are the statistical query dimension and
the minimum discrepancy under product distributions. We start with an observation
that a concept class C with low statistical query dimension contains a small set of
functions which, collectively, approximate all of C in a nontrivial way.

PROPOSITION 10.4 (Sherstov [198]). Let C be a given concept class of functions
X ! f�1;C1g with sqµ.C / D N: Then there is a set H � C with jH j D N
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such that each f 2 C has

ˇ̌̌̌
E
µ

Œf .x/h.x/�

ˇ̌̌̌
>

1

N C 1

for some h 2H :

PROOF. For a set F � C , define

γ .F / D max
f1;f2

ˇ̌̌̌
E
µ

Œf1.x/f2.x/�

ˇ̌̌̌
:

where the maximum ranges over distinct functions f1; f2 2 C : In words, γ .F /

is the largest correlation between any two distinct functions in F . Let γ� be the
minimum γ .F / over all N -element subsets F � C . Let H be a set of N functions
in C such that γ .H / D γ� and the number of function pairs in H with correlation
γ� is the smallest possible (over all N -element subsets F with γ .F / D γ�).

We claim that each f 2 C has jEµŒf .x/h.x/�j > 1=.N C 1/ for some
h 2 H . If f 2 H , the claim is trivially true. Thus, assume that f … H . There
are two cases to consider. If γ .H / 6 1=.N C 1/; then f must have correlation
more than 1=.N C 1/ with some member of H because otherwise we would have
γ .H [ff g/ 6 1=.NC1/ and sqµ.C / > NC1. If γ .H / > 1=.NC1/; then again
f must have correlation more than 1=.N C 1/ with some member of H because
otherwise we could improve on the number of function pairs in H with correlation
γ� by replacing a suitably chosen element of H with f:

Our next ingredient is an expression for the discrepancy of a sign matrix
under a product distribution. Recall from Section 3.2 that a product distribution µ
on the finite Cartesian product X � Y is a distribution that can be expressed in the
form µ.x; y/ D µX.x/µY .y/ for some distributions µX and µY over X and Y;

respectively.

LEMMA 10.5 (Ford and Gál [69]). Let f WX � Y ! f�1;C1g be a given func-
tion, where X and Y are finite sets. Let µ.x; y/ D µX.x/µY .y/ be a product
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distribution over X � Y: Then

discµ.f / 6

s
E

y;y0�µY

ˇ̌̌̌
E

x�µX

Œf .x; y/f .x; y 0/�

ˇ̌̌̌
:

PROOF (adapted from [69]). As shown in the proof of Lemma 3.3, there exist val-
ues αx;βy 2 f�1;C1g for all x and y such that

discµ.f / 6

ˇ̌̌̌
ˇX

x;y

αxβyµ.x; y/f .x; y/

ˇ̌̌̌
ˇ :

Recalling that µ.x; y/ D µX.x/µY .y/; we obtain

discµ.f / 6

ˇ̌̌̌
E

x�µX

E
y�µY

Œαxβyf .x; y/�

ˇ̌̌̌
:

The remainder of the proof is closely analogous to Lemma 3.3. Squaring and ap-
plying the Cauchy-Schwarz inequality,

discµ.f /2 6 E
x�µX

"�
E

y�µY

Œαxβyf .x; y/�

�2
#

D E
x�µX

E
y;y0�µY

Œα2
xβyβy0f .x; y/f .x; y 0/�

6 E
y;y0�µY

ˇ̌̌̌
E

x�µX

Œf .x; y/f .x; y 0/�

ˇ̌̌̌
;

where the last step uses the fact that α2
x D jβyβy0j D 1:

We are now in a position to prove the claimed equivalence of the statistical
query dimension of a sign matrix and its minimum discrepancy under product dis-
tributions. We split the proof in two parts, corresponding to the upper and lower
bound on the product discrepancy in terms of the statistical query dimension.
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LEMMA 10.6 (Sherstov [198]). Let A 2 f�1;C1gM �N : Then

disc�.A/ <

s
2

sq.A/
:

PROOF. Assume sq.A/ D d: By definition, there are d rows f1; : : : ; fd 2

f�1;C1gN of A and a distribution µ on f1; : : : ; N g such that

ˇ̌̌̌
E

x�µ
Œfi.x/fj .x/�

ˇ̌̌̌
6

1

d

for all i ¤ j: Let U be the uniform distribution over the d rows f1; : : : ; fd of A:

Then by Lemma 10.5,

discµ�U .A/2 6 E
i;j �U

ˇ̌̌̌
E

x�µ
Œfi.x/fj .x/�

ˇ̌̌̌
6

1

d
� 1C

d � 1

d
�

1

d
<

2

d
:

We now derive a matching lower bound on the product discrepancy in terms
of the statistical query dimension.

LEMMA 10.7 (Sherstov [198]). Let A 2 f�1;C1gM �N : Then

disc�.A/ >
1

8 sq.A/2
:

PROOF. Let µ � λ be an arbitrary product distribution over f1; : : : ; N g �

f1; : : : ; M g: We will obtain a lower bound on discµ�λ.A/ by constructing an ef-
ficient protocol for A with a suitable advantage.

Let sq.A/ D d: Then Proposition 10.4 guarantees the existence of d rows
f1; : : : ; fd 2 f�1;C1gN in A such that each of the remaining rows f satisfies
jEµŒf .x/fi.x/�j > 1=.d C 1/ for some i D 1; : : : ; d: This yields the following
protocol for evaluating Ayx: Bob, who knows the row index y; sends Alice the
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index i of the function fi whose correlation with the yth row of A is the greatest
in absolute value. Bob additionally sends Alice the sign σ 2 f�1;C1g of the
correlation of fi and the yth row of A: This communication costs dlog de C 1 bits.
Alice, who knows the column index x; announces σ � fi.x/ as the output of the
protocol.

For every fixed y; the described protocol achieves advantage greater than
1=.d C 1/ over the choice x: As a result, the protocol achieves overall advantage
greater than 1=.d C 1/ with respect to any distribution λ on the rows of A: Since
only dlog deC2 bits are exchanged, we obtain the sought bound on the discrepancy
by Proposition 3.2:

discµ�λ.A/ >
1

.d C 1/ � 22Cdlog de
>

1

8d 2
;

where the second inequality holds because d is an integer.

At last, we arrive at the main result of this section.

THEOREM 10.8 (Sherstov [198]). Let A 2 f�1;C1gM�N : Then

r
1

2
sq.A/ <

1

disc�.A/
< 8 sq.A/2:

PROOF. Immediate from Lemmas 10.6 and 10.7.

Observe that the product discrepancy is the same for a sign matrix as for its
transpose: disc�.A/ D disc�.AT/: In particular, Theorem 10.8 has the following
interesting corollary that the rows and columns of a sign matrix have the same
statistical query dimension, up to a polynomial factor.

COROLLARY 10.9 (Sherstov [198]). Let A 2 f�1;C1gM �N : Then

�
sq.A/

128

�1=4

< sq.AT/ < 128 sq.A/4:
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10.4 Product discrepancy vs. sign-rank
In this section, we analyze the relationship between the product discrepancy of
a sign matrix and its sign-rank. Our main result is that the product discrepancy
implies a lower bound on the sign-rank and that the gap between the two can be
arbitrary. In view of the equivalence of the product discrepancy and statistical query
dimension, proved in the previous section, it will be convenient to work with the
statistical query dimension instead. Along the way, we will substantially sharpen
the upper bound on the statistical query dimension of halfspaces derived by Blum
et al. [36].

THEOREM 10.10 (Sherstov [198]). Fix a finite set X and arbitrary functions
φ1; : : : ;φkWX ! R: Let C be the set of all Boolean functions f WX ! f�1;C1g

representable as f .x/ � sgn.
Pk

iD1 aiφi.x// for some reals a1; : : : ; ak: Then

sq.C / < 2k2:

PROOF. Fix a distribution µ on X: We shall use the same technical tool, Forster’s
work [70] on sign-rank, as Simon [206], who proved this claim for µ uniform. As-
sume for simplicity that µ is rational, extension to the general case being straight-
forward. Then the weight µ.x/ of each point x is an integral multiple of 1=M;

where M is a suitably large integer.

Let N D sqµ.C /: By definition, there exists a set F � C of jF j D N

functions with jEµŒf .x/g.x/�j 6 1=N for all distinct f; g 2 F : Consider the
matrix A 2 f�1;C1gN �M whose rows are indexed by the functions in F , whose
columns are indexed by inputs x 2 X (an input x indexes exactlyµ.x/M columns),
and whose entries are given by A D Œf .x/�f;x: By Theorem 7.5,

N 6
.rk˙ A/2 kAk2

M
: (10.1)

We complete the proof by obtaining upper bounds on rk˙ A and kAk:

We analyze the sign-rank of A first. Recall that each f 2 F has a represen-
tation f .x/ D sgn.

Pk
iD1 af;iφi.x//; where af;1; : : : ; af;k are reals specific to f .
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Therefore, A has the same sign pattern as the matrix

"
kX

iD1

af;iφi.x/

#
f;x

D

kX
iD1

Œaf;iφi.x/�f;x:

The last equation shows that A is sign-representable by the sum of k matrices of
rank 1, whence

rk˙ A 6 k: (10.2)

We now turn to kAk: The N �N matrix AAT is given by

AAT
D

h
M � E

x�µ
Œf .x/g.x/�

i
f;g

:

This means that the diagonal entries of AAT are equal to M; whereas the off-
diagonal entries do not exceed M=N in absolute value. As a consequence,

kAk2
D kAAT

k

6 kM � Ik C kAAT
�M � Ik

6 kM � Ik C kAAT
�M � IkF

6 M CM

r
N.N � 1/

N 2
: (10.3)

Substituting the estimates (10.2) and (10.3) in (10.1) yields the inequality

N 6 k2

 
1C

r
1 �

1

N

!
;
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whence

N 6 2k2
�

1

4
:

This completes the proof for rational µ: To extend the analysis to irrational distribu-
tions µ, one considers a rational distribution Qµ that approximates µ closely enough
and follows the same reasoning. We omit these standard manipulations.

REMARK 10.11 (Sherstov [198]). Observe that the proof of Theorem 10.10 actu-
ally yields the following stronger result. For a distribution µ; let N be the size of
the largest set ff1; : : : ; fN g � C with average (not maximum) pairwise correlation
at most 1=N :

1

N.N � 1/

X
i¤j

�
E
µ

Œfi.x/fj .x/�

�2

6
1

N 2
:

Clearly, N is at least the statistical query dimension of C . The above proof of
Theorem 10.10 establishes an upper bound on this larger quantity: N < 2k2:

Recall that a halfspace is a Boolean function f W f0; 1gn ! f�1;C1g rep-
resentable as f .x/ � sgn.

P
aixi � θ/ for some fixed reals a1; : : : ; an;θ: Half-

spaces are arguably the most studied concept class [139, 216, 123, 121, 127, 128]
in computational learning theory, with applications in areas as diverse as data min-
ing, artificial intelligence, and computer vision. In a fundamental paper, Blum et
al. [36] gave a polynomial-time algorithm for learning halfspaces in the statistical
query model under arbitrary distributions. It follows from their work that the sta-
tistical query dimension of halfspaces is O.nc/; where c > 0 is a sufficiently large
constant. As an immediate corollary to Theorem 10.10, we substantially sharpen
that upper bound.
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COROLLARY 10.12 (Sherstov [198]). Let C be the concept class of halfspaces
f0; 1gn ! f�1;C1g: Then

sq.C / < 2.nC 1/2:

The statistical query dimension of halfspaces is at least n C 1 under the
uniform distribution, as one can easily verify by considering the halfspaces .�1/x1;

.�1/x2; : : : ; .�1/xn;�1. Thus, the quadratic upper bound of Corollary 10.12 is not
far from optimal. In addition to strengthening the estimate of Blum et al. [36],
Corollary 10.12 has a much simpler and shorter proof that builds only on Forster’s
self-contained theorem [70]. The proof of Blum et al. relies on nontrivial notions
from computational geometry and requires a lengthy analysis of robustness under
noise. That said, the proof of Blum et al. has the substantial advantage of giving an
explicit learning algorithm, unlike the existential proof in this section.

Theorem 10.10 admits the following restatement in matrix terminology.

THEOREM 10.13 (Sherstov [198]). Let A 2 f�1;C1gM�N be an arbitrary matrix.
Then

sq.A/ < 2.rk˙ A/2:

We now prove that the gap between the two quantities in Theorem 10.13
can be arbitrary.

THEOREM 10.14 (Sherstov [197]). Let ε > 0 be an arbitrary constant. Then there
exists a matrix A 2 f�1;C1gN �N with

sq.A/ D O.1/;

rk˙ A D ˝.N 1�ε/:

PROOF. Let c D 2d1=εe: By Theorem 10.1, there exists a matrix A 2 Z .N; c/

with rk˙ A D ˝.N 1�ε/: On the other hand, it is clear that every matrix in Z .N; c/
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has Vapnik-Chervonenkis dimension at most 2c; whence sq.A/ 6 2O.c/ D O.1/

by Lemma 10.3.

Since the sign-rank of an N � N sign matrix is at most N; Theorem 10.14
gives essentially the largest possible gap between the statistical query dimension
and sign-rank that can exist by definition. We close this section with a lower bound
on the product discrepancy in terms of sign-rank, which will be useful later in this
chapter.

THEOREM 10.15 (Sherstov). Let A 2 f�1;C1gM�N : Then

disc�.A/ >
1

32.rk˙ A/4
:

PROOF. Immediate from Lemma 10.7 and Theorem 10.13.

10.5 Sign-rank vs. nonproduct discrepancy, or PPcc ( UPPcc

In this section, we examine the relationship between the sign-rank and discrepancy.
We start by citing a well-known bound on the former in terms of the latter. We
then show by an explicit construction that the gap between the two quantities can
be exponential. In particular, we will prove the separation PPcc ( UPPcc; where
the communication classes PPcc and UPPcc correspond to sign matrices with non-
negligible discrepancy and low sign-rank, respectively.

There are various ways to bound the sign-rank of a matrix in terms of its
discrepancy. The derivation that we present here is based on two well-known results
in the literature. The first of these, due to Ben-David et al. [35], is an application of
the random projection technique of Arriaga and Vempala [20].

THEOREM 10.16 (Ben-David et al. [35]). Let A 2 f�1;C1gM�N : Then

rk˙ A 6 O.mc.A/2 log.M CN //:
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The second result, due to Linial and Shraibman [145], proves that margin
complexity and discrepancy are essentially equivalent notions.

THEOREM 10.17 (Linial and Shraibman [145]). Let A be a sign matrix. Then

1

8
mc.A/ 6

1

disc.A/
6 8 mc.A/:

An immediate consequence of Theorems 10.16 and 10.17 is the sought re-
lationship between the sign-rank and discrepancy.

THEOREM 10.18 (Sign-rank vs. discrepancy). Let A 2 f�1;C1gM�N : Then

rk˙.A/ 6 O

�
log.M CN /

disc.A/2

�
:

One can alternately derive Theorem 10.18 by a communication-based argu-
ment, without appealing to margin complexity. The above derivation, however, is
more economical for our purposes because we will have occasion to refer to Theo-
rems 10.16 and 10.17 later on.

Now that we have seen that the sign-rank of a matrix can be bounded in
terms of its discrepancy, we will show an arbitrary gap between the two quantities.
Consider the Boolean function GHRnW f�1;C1g4n2

� f�1;C1g2n ! f�1;C1g

given by

GHRn.x; y/ D sgn

 
1C

2n�1X
j D0

yj

n�1X
iD0

2i.xi;2j C xi;2j C1/

!
:

This function was defined and studied by Goldmann et al. [82] in the context of
separating classes of threshold circuits. Their analysis exhibits a nonproduct distri-
bution with respect to which GHRn.x; y/ has high distributional complexity:
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THEOREM 10.19 (Goldmann et al. [82]). There is an .explicitly given/ nonprod-
uct distribution λ such that every deterministic one-way protocol for GHRn with
advantage γ with respect to λ has cost at least log.γ 2n=2=

p
n/ �O.1/:

A key consequence of Theorem 10.19 for our purposes is as follows.

LEMMA 10.20 (Sherstov [198]). Let GHRn be as defined above. Then

disc.GHRn/ D O.
p

n2�n=2/:

PROOF. Consider the distribution λ from Theorem 10.19. Let R be a rectangle for
which the discrepancy discλ.GHRn/ is achieved:

discλ.GHRn/ D

ˇ̌̌̌
ˇ̌ X
.x;y/2R

λ.x; y/GHRn.x; y/

ˇ̌̌̌
ˇ̌ :

We claim that there is a deterministic one-way protocol for GHRn.x; y/ with con-
stant cost and with advantage at least discλ.GHRn/ with respect to λ: Namely, de-
fine

a D sgn

 X
.x;y/2R

λ.x; y/GHRn.x; y/

!
;

b D sgn

 X
.x;y/ 62R

λ.x; y/GHRn.x; y/

!
:
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Consider the protocol P that outputs a if the input is in R; and outputs b otherwise.
By definition, the advantage of P with respect to λ is

X
x;y

λ.x; y/P.x; y/GHRn.x; y/

D a
X

.x;y/2R

λ.x; y/GHRn.x; y/C b
X

.x;y/62R

λ.x; y/GHRn.x; y/

>

ˇ̌̌̌
ˇ̌ X
.x;y/2R

λ.x; y/GHRn.x; y/

ˇ̌̌̌
ˇ̌

D discλ.GHRn/:

But by Theorem 10.19, every one-way constant-cost protocol achieves advantage
at most O.

p
n2�n=2/: Thus, discλ.GHRn/ D O.

p
n2�n=2/:

We arrive at the sought separation of sign-rank and discrepancy.

THEOREM 10.21 (Sherstov [198]). There is an .explicitly given/ sign matrix A 2

f�1;C1gN �N log N

with

rk˙ A 6 log N;

disc.A/�1 > ˝

 
N 1=4p
log N

!
:

PROOF. Consider the matrix A D ŒGHRn.x; y/�x;y : By definition,

rk˙ A 6 rk

241C

2n�1X
j D0

yj

n�1X
iD0

2i.xi;2j C xi;2j C1/

35
x;y

6 2nC 1:

On the other hand, disc.A/ 6 O.
p

n2�n=2/ by Lemma 10.20.
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Independently of the author, Buhrman et al. [53] exhibited a different func-
tion with an exponential gap between the sign-rank and the reciprocal of the dis-
crepancy.

THEOREM 10.22 (Buhrman et al. [53]). There is an .explicitly given/ matrix A 2

f�1;C1gN �N with

rk˙ A 6 log N;

disc.A/�1 > expf˝.log1=3 N /g:

PROOF (adapted from [53]). Define

A D

"
sgn

 
1C

nX
iD1

.�2/ixiyi

!#
x;y2f0;1gn

:

Then it is clear that the sign-rank of A does not exceed nC1; whereas Theorem 4.16
states that disc.A/ D expf�˝.n1=3/g:

Recall from Section 3.4 that PPcc and UPPcc are the communication classes
that correspond to sign matrices with low sign-rank and nonnegligible discrepancy,
respectively. Theorem 10.18 makes it clear that

PPcc
� UPPcc;

settling the promised containment (3.7). Moreover, Theorems 10.21 and 10.22 each
immediately imply that the containment is proper:

COROLLARY 10.23 (Buhrman et al. [53], Sherstov [198]).

PPcc
6� UPPcc:
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Another useful perspective on the results of this section the following the-
orem, which shows that an exponential gap is achievable between the product and
nonproduct discrepancy of a function.

THEOREM 10.24 (Sherstov). There exists an .explicitly given/ Boolean function
f W f�1;C1gn

2

� f�1;C1gn ! f�1;C1g with

disc�.f / > ˝.n�4/;

disc.f / 6 O.
p

n2�n=4/:

Furthermore, there exists an .explicitly given/ Boolean function gW f0; 1gn �

f0; 1gn ! f�1;C1g such that

disc�.g/ > ˝.n�4/;

disc.g/ 6 expf�˝.n1=3/g:

PROOF. Let m D bn=2c and define f .x; y/ D GHRm.x; y/: Since the sign-rank
of Œf .x; y/�x;y is at most 2m C 1; the sought properties of f follow from Theo-
rem 10.15 and Lemma 10.20. Next, define g.x; y/ D sgn.1 C

Pn
iD1.�2/ixiyi/:

Since the sign-rank of Œg.x; y/�x;y is at most nC1; the sought properties of g follow
immediately from Theorems 10.15 and 4.16.

We conclude this section with an observation about discrepancy that will be
useful later in this chapter.

PROPOSITION 10.25 (Lower bound on discrepancy). Let A 2 f�1;C1gM�N : Then

disc.A/ >
1

8 min
np

M;
p

N
o :

PROOF. Immediate from Proposition 2.16 and Theorem 10.17.
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10.6 Product vs. nonproduct distributional complexity
Let f WX � Y ! f�1;C1g be a given communication problem. Yao’s well-known
minimax principle [224], stated as Theorem 3.1 above, gives the following rela-
tionship between the randomized and distributional communication complexities
of f :

Rε.f / D max
µ
fDµ

ε .f /g :

This equation has been the basis for essentially all lower bounds on randomized
communication complexity: one defines a probability distribution µ on X � Y

and argues that the cost D
µ
ε .f / of the best deterministic protocol with error at

most ε over µ must be high. The main question, then, is what distribution µ to
consider. Product distributions µ.x; y/ D µX.x/µY .y/ are particularly attractive
because they are easier to analyze. Unfortunately, they do not always lead to op-
timal lower bounds. A standard example of this phenomenon is the disjointness
function DISJn.x; y/ D

Wn
iD1.xi ^ yi/; whose randomized complexity is �.n/

bits [102, 176] and whose distributional complexity is O.
p

n log n/ under every
product distribution [23, �8].

Let D�
ε .f / stand for the maximum distributional complexity of f under a

product distribution:

D�
ε .f / D max

µ product
fDµ

ε .f /g :

Motivated by the above considerations, Kushilevitz and Nisan [137, p. 37] posed the
problem of estimating the gap between D�

1=3
.f / and R1=3.f /: In particular, they

asked whether the gap between the two quantities is at most polynomial for all f:

Kremer et al. [135] studied this question in the context of one-way randomized pro-
tocols and obtained a separation of O.1/ versus ˝.n/ for the function GREATER-
THAN on n-bit strings. Unfortunately, a function can have vastly different com-
munication complexity in the one-way model and the usual, two-way model. Such
is the case of GREATER-THAN, whose two-way randomized complexity is a mere
O.log n/: On a different front, we proved in Theorem 10.24 that the product dis-
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crepancy disc�.f / of a function can be exponentially larger than its nonproduct
discrepancy disc.f /: In particular, our work in previous sections shows that the use
of nonproduct distributions is indeed essential to the discrepancy method.

In this section, we will solve the Kushilevitz-Nisan problem completely and
in its original form. Specifically, we will prove the existence of a function f with
D�

1=3
.f / D O.1/ and R1=3.f / D ˝.n/:

THEOREM 10.26 (Sherstov [197]). Let ε > 0 be an arbitrary constant. Then there
exists a function f W f0; 1gn � f0; 1gn ! f�1;C1g with all of the following proper-
ties:

D�
ε .f / D O.1/;

R1=3.f / D ˝.n/;

disc�.f / D ˝.1/;

disc.f / D O
�
2�n. 1

2
�ε/
�
;

U.f / D ˝.n/:

A key aspect of Theorem 10.26 is that the function f in question has expo-
nentially small discrepancy. Indeed, its discrepancy essentially meets the ˝.2�n=2/

lower bound given by Proposition 10.25 for any function on n-bit strings. As a re-
sult, f has communication complexity ˝.n/ not only in the randomized model, but
also in the nondeterministic and various quantum models. Furthermore, the com-
munication complexity of f remains ˝.n/ even if one simply seeks a randomized
or quantum protocol with advantage 2�n=4 over random guessing. Finally, f has
complexity ˝.n/ in the unbounded-error model, which is even more powerful. In
summary, f has the highest communication complexity in all standard models, and
yet the distributional method restricted to product distributions can certify at best an
˝.1/ lower bound. Theorem 10.26 also improves on our previously obtained expo-
nential separation between product and nonproduct discrepancy (Theorem 10.24),
although the new function is no longer explicitly given.
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As a starting point in our technical development, we recall an elegant sim-
ulation that relates the communication complexity of a sign matrix to its Vapnik-
Chervonenkis dimension.

THEOREM 10.27 (Kremer et al. [135, Thm. 3.2]). Let A be a sign matrix. Let ε be
given with 0 < ε 6 1=3: Then

D�
ε .A/ D O

�
1

ε
vc.A/ log

1

ε

�
:

Moreover, this communication cost can be achieved with a one-way protocol.

PROOF (adapted from [135]). Let X and Y be the finite sets that index the columns
and rows of A; respectively. Let µ.x; y/ D µX.x/µY .y/ be a given product dis-
tribution. Consider the following randomized one-way protocol for A: On input
.x; y/ 2 X � Y; Alice and Bob use their shared random bits to pick points

x.1/; x.2/; : : : ; x.m/
2 X

independently at random, according to µX : Here m is a parameter to be fixed later.
Next, Bob sends Alice the values

A.y; x.1//; A.y; x.2//; : : : ; A.y; x.m//:

At this point, Alice identifies any y 0 2 Y with

A.y 0; x.1// D A.y; x.1//;

A.y 0; x.2// D A.y; x.2//;

:::

A.y 0; x.m// D A.y; x.m//;

and announces A.y 0; x/ as the output of the protocol.
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In the terminology of Section 2.5, the protocol amounts to Alice learning
the unknown row Ay of the matrix A from random labeled examples distributed
according to µX : By the Vapnik-Chervonenkis Theorem (Theorem 2.14), any row
A0

y consistent with m D O.1
ε vc.A/ log 1

ε / labeled examples will, with probability
at least 1 � ε=2; have �µX

.A0
y; Ay/ 6 ε=2: In particular, Alice’s answer will be

correct with probability at least 1 � ε (with respect to µX and regardless of Bob’s
input y).

Thus, we have obtained a randomized one-way protocol for A with cost m

and error at most ε over µ: By an averaging argument, there must be a one-way
deterministic protocol with the same cost and error at most ε with respect to µ:

We are now in a position to prove the main result of this section, which is
an elaboration of Theorem 10.26 above.

THEOREM 10.28. Let ε be given, 0 < ε 6 1=3: Then there exists a function
f W f0; 1gn � f0; 1gn ! f�1;C1g with all of the following properties:

D�
ε .f / 6 �

�
1

ε2
log

1

ε

�
;

R1=3.f / > �.n/;

disc�.f / > ε�.1=ε2/;

disc.f / 6 O
�
2�n. 1

2
�ε/
�

;

U.f / > �.n/:

PROOF. Let α > 0 be the absolute constant from Theorem 10.2. The inner product
function IPn.x; y/ D

Ln
iD1.xi ^ yi/ satisfies R1=3.IPn/ > D�

1=3
.IPn/ > ˝.n/ and

disc�.IPn/ 6 2�n=2 by Proposition 3.5. One further has disc.IPn/ D ˝.2�n=2/ by
Proposition 10.25 as well as U.IPn/ D ˝.n/ by Theorem 7.5. In summary, the
theorem holds for the inner product function when ε < 4

α

p
log n=n:
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In the contrary case, Theorem 10.2 is applicable with c D 2d1=εe and en-
sures the existence of A 2 Z .2n; c/ with rk˙ A > α2n.1�ε/: Then

disc.A/ 6
8

mc.A/
by Theorem 10.17

6 O

�r
n

rk˙ A

�
by Theorem 10.16

6 �
�
2�n. 1

2
�ε/
�

:

By Proposition 3.2, we immediately conclude that

R1=3.A/ > �.n/:

Since every matrix in Z .2n; c/ has Vapnik-Chervonenkis dimension at most 2c; it
follows from Theorem 10.27 that

D�
ε .A/ 6 �

�
1

ε2
log

1

ε

�
: (10.4)

In light of (10.4), Proposition 3.2 shows that

disc�.A/ > ε�.1=ε2/:

At last, Theorem 7.2 shows that

U.A/ D log rk˙ A˙O.1/ D �.n/:

REMARK 10.29. The upper bound D�
ε .f / 6

�
1
ε2 log 1

ε

�
stated in Theorem 10.28

can be achieved even by one-way protocols. This is because we bounded D�
ε .f /

using Theorem 10.27, which gives a one-way communication protocol for the task.
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Chapter 11

Conclusions and Open Problems

238



11.1 Our contributions in communication complexity
In Chapters 3–10, we answered several fundamental questions in communication
complexity. We started by developing a novel technique, the pattern matrix method,
for proving communication lower bounds. The pattern matrix method converts
well-studied analytic properties of Boolean functions, such their approximate de-
gree or threshold degree, into lower bounds for the associated communication prob-
lems. Depending on the analytic property used, our method yields lower bounds
in a variety of settings, including classical and quantum communication channels
as well as bounded-error, unbounded-error, and small-bias protocols. We used our
technique and additional analytic machinery to solve several open problems in com-
munication complexity and circuit complexity, as follows.

First, we settled the relationship between two well-studied circuit classes,
majority circuits and constant-depth AND/OR/NOT circuits, thereby solving an
open problem posed in 1997 by Krause and Pudlák [132] and showing the opti-
mality of Allender’s classical simulation of constant-depth circuits [11].

Second, we obtained lower bounds for a new family of functions in the
bounded-error quantum model, regardless of prior entanglement. Our results
broadly subsume the celebrated work by Razborov [177], who studied symmetric
functions in this context and used quite different techniques.

Third, we made progress on proving the conjectured polynomial equiva-
lence of quantum and classical bounded-error communication. In particular, we
proved this conjecture for the communication problems of computing f .x^y/ and
f .x _ y/ on input x; y 2 f0; 1gn; broadly subsuming previous work.

Fourth, we studied unbounded-error communication complexity. Specif-
ically, we settled the unbounded-error communication complexity of symmetric
functions and solved a longstanding open problem due to Babai et al. [23] on the
comparative power of alternation and unbounded-error communication.

Fifth, we fully determined the relations and gaps among three key complex-
ity measures of a communication problem: discrepancy, product discrepancy, and
sign-rank. As as application, we solved the open problem on the distributional com-
plexity under product and nonproduct distributions, posed in 1997 by Kushilevitz
and Nisan [137]. As another application, we gave an exponential separation of the
communication classes PPcc and UPPcc; defined in 1986 by Babai et al. [23].

239



Finally, we discussed the broader impact of our work in the research com-
munity. We presented generalizations of the pattern matrix method by several au-
thors to the multiparty model and the resulting progress on fundamental questions in
communication complexity. The new consequences include improved lower bounds
for the disjointness function [140, 59], an exponential separation of nondetermin-
istic and randomized complexity [64, 65] , and near-tight communication lower
bounds for constant-depth circuits [29]. We also contributed to this growing body
of work a separation of nondeterministic and co-nondeterministic complexity, as
well as separations involving Merlin-Arthur communication.

11.2 Open problems
There is no shortage in communication complexity of difficult, mathematically rich,
and natural open problems. We conclude with several challenges that are directly
related to the results and techniques of this thesis. One such concerns representa-
tions of Boolean functions by real polynomials.

OPEN PROBLEM 1. Develop strong new techniques for analyzing the approximate
degree and threshold degree of Boolean functions.

The motivation behind this problem is clear in view of the applications of the ap-
proximate degree and threshold degree in the preceding chapters of this thesis as
well as earlier literature. Essentially this question was posed by Aaronson in a
recent tutorial [2].

To set the context for our next problem, recall from the previous chapters
that the approximate degree of a function f W f0; 1gn ! f�1;C1g characterizes the
deterministic, randomized, and quantum bounded-error communication complexity
of the associated pattern matrix Mf up to a polynomial. Analogously, the threshold
weight of f characterizes the discrepancy of Mf : An analytic property conspicu-
ously absent from this picture is the threshold degree, which likely characterizes
the unbounded-error communication complexity of Mf : In summary, we have the
following open problem [178].

OPEN PROBLEM 2. Prove that the threshold degree of a Boolean function implies
a lower bound on the unbounded-error communication complexity of the corre-
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sponding pattern matrix. More precisely, prove that the .nc; n; f /-pattern matrix
has unbounded-error communication complexity deg˙.f /˝.1/ for some constant
c > 1 and every Boolean function f W f0; 1gn ! f�1;C1g:

Continuing, observe that the pattern matrix method relates analytic notions
to combinatorial ones, viz., the analytic properties of a Boolean function to its com-
munication complexity in different models. In the same vein, the next two open
problems are well-known conjectures [147, 55] about the polynomial equivalence
of analytic complexity measures and their natural combinatorial analogues. For
example, one can consider the deterministic communication complexity of a sign
matrix F; an essentially combinatorial notion, and its analytic counterpart log rk F:

Similarly, one can consider the sensitivity of a Boolean function f and its coun-
terpart block sensitivity, which is equivalent to several analytic properties of f: We
have:

OPEN PROBLEM 3. Prove the log-rank conjecture of Lovász and Saks [147]. In
other words, prove that every sign matrix F obeys D.F / 6 .log rk F /O.1/CO.1/:

OPEN PROBLEM 4. Prove a polynomial equivalence of sensitivity and block sen-
sitivity for every Boolean function. Formally, prove that for some constant α > 0;

every function f W f0; 1gn ! f�1;C1g obeys bs.f /α 6 s.f / 6 bs.f /:

Another natural question raised by several authors [54, 116, 205] and di-
rectly related to our work is the polynomial equivalence of the classical and quan-
tum communication complexities for functions of the form f .x ^ y/:

OPEN PROBLEM 5. Prove a polynomial equivalence of the quantum and classical
bounded-error complexities for communication problems of the form F.x; y/ D

f .x ^ y/; where f W f0; 1gn ! f�1;C1g is any given function.

The next two open problems focus on computational models that, on the one
hand, have long resisted attempts at proving lower bounds, but on the other hand
seem very related to the communication and circuit questions successfully resolved
in this thesis and earlier literature. Both problems are well-known [23, 132].

OPEN PROBLEM 6. Exhibit a family of sign matrices outside the communication
classes †cc

2 and …cc
2 : More ambitiously, separate the classes PHcc and PSPACEcc

:
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OPEN PROBLEM 7. Exhibit a function f W f0; 1gn ! f�1;C1g that requires a
depth-2 threshold circuit of exponential size, regardless of the weights. More am-
bitiously, prove that the inner product function IPn.x; y/ D .�1/

P
xi yi has this

property.

We conclude with two natural avenues for work in multiparty communica-
tion complexity. The first involves proving near-tight lower bounds on the multi-
party communication complexity of the disjointness function, matching the known
upper bounds [87]. The second involves breaking the logarithmic barrier for the
number of players in multiparty communication complexity.

OPEN PROBLEM 8. Derive a lower bound of n˝.1/=2O.k/ on the multiparty com-
munication complexity of the disjointness function in the k-party bounded-error
model.

OPEN PROBLEM 9. Exhibit a communication problem f W .f0; 1gn/k ! f�1;C1g

with complexity n˝.1/ in the bounded-error model with k � log n players.
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Part II

Learning Theory
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Chapter 12

Lower Bounds for PAC Learning
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In this first chapter on learning theory, we focus on the problem of PAC
learning intersections of halfspaces on the hypercube f0; 1gn: This problem has
long resisted attack and remains a central challenge in the area. Our main result
shows that in fact, under a widely believed cryptographic assumption, no efficient
algorithm exists for the task. We obtain analogous hardness results for learning
other concept classes, such as majority circuits and arithmetic circuits. Analytic
representations of Boolean functions play a central role in our proofs.

12.1 Introduction
Recall that a halfspace on the hypercube f0; 1gn is a Boolean function of the form
f .x/ D sgn.

P
aixi � θ/; where a1; : : : ; an;θ are some fixed weights. Halfspace-

based learning algorithms have applications in many areas of computer science,
including data mining, artificial intelligence, and computer vision. This chapter fo-
cuses on intersections of halfspaces, a natural extension of the concept class of half-
spaces. While many efficient algorithms exist for PAC learning a single halfspace,
the problem of learning the intersection of even two halfspaces remains a central
challenge in computational learning theory. A variety of efficient algorithms have
been developed for natural restrictions of the problem [139, 216, 121, 125]. At the
same time, attempts to prove that the problem is hard have been met with limited
success: all previous hardness results [40, 10] for PAC learning intersections of
halfspaces applied only to the case of proper learning, whereby the learner’s output
hypothesis must itself be an intersection of halfspaces. We give a thorough review
of the PAC model and other learning-theoretic background in Section 12.2.

The main contribution of this chapter is the first representation-independent
hardness result for PAC learning intersections of halfspaces. Put differently, we
place no restrictions on the learner’s output hypothesis other than polynomial-time
computability. We prove that, under a widely believed cryptographic assumption,
there is no efficient algorithm for PAC learning the intersection of nε halfspaces on
f0; 1gn: We obtain analogous results for majority circuits and arithmetic circuits.
The cryptographic assumption on which our results are based is that of compu-
tational intractability for well-studied lattice-based problems, such as the unique
shortest vector problem or the shortest independent vector problem. We defer a
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more technical statement of our results and their extensions to the concluding two
sections of the chapter.

Our proof is based on a well-known method for obtaining hardness results
for a concept class C ; which consists in proving that C contains the decryption
functions of a public-key cryptosystem. For this purpose, we use recent public-key
cryptosystems due to Regev [183, 184], presented in detail in Section 12.3. The
difficulty in this program, however, is that intersections of a polynomial number
of halfspaces cannot directly compute the decryption functions of the cryptosys-
tems that we use. In fact, the decryption functions in question contain PARITY as
a subfunction, which cannot be computed by intersections of a polynomial num-
ber of any unate functions [127]. Furthermore, the decryption functions in Regev’s
cryptosystems perform a division or an iterated addition, requiring threshold cir-
cuits of depth 3 and 2, respectively [219, 209]. We overcome these difficulties
by a purely analytic argument, namely, by exploiting nonuniform distributions on
f0; 1gn to help us with the computation. This technique allows us to draw on the
computational power of intersections of quadratic polynomial threshold functions
to compute the decryption functions, while still obtaining a hardness result for inter-
sections of halfspaces. We present a detailed review of the cryptography-to-learning
reduction in Section 12.4, followed by the actual implementations of the decryption
functions in Sections 12.5 and 12.6.

12.2 Weak and strong PAC learning
A central model in learning theory is Valiant’s PAC model [213], already reviewed
briefly in Chapter 2. As is common in computational complexity, we will dis-
cuss PAC learning in the context of an infinite family C1; C2; : : : ; Cn; : : : ; where
Cn is a set of Boolean functions on f0; 1gn: It is a widely followed convention in
the literature to refer to the sequence fCng as a concept class, although it is for-
mally an infinite sequence of concept classes, each on a different domain. We
will be using the formulation of the PAC model for arbitrary distributions. In this
setting, one fixes a function f 2 Cn and a distribution µ on f0; 1gn; both un-
known to the learner, and provides the learner with m D m.n/ training examples
.x.1/; f .x.1///; : : : ; .x.m/; f .x.m/// labeled according to the unknown function f;

where x.1/; : : : ; x.m/ are independent and identically distributed according to µ:
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The learner is then called upon to produce, with probability at least 1 � δ; a hy-
pothesis hW f0; 1gn ! f�1;C1g such that EµŒf .x/ ¤ h.x/� < ε: Here ε and δ
are small positive constants, and the probability is taken over the random choice of
examples and any randomized computation by the learner. The family fCng is said
to be efficiently PAC learnable, or equivalently PAC learnable in polynomial time,
if a successful learner exists that takes m.n/ < nc labeled examples and runs in
time at most nc; for some constant c > 1 and all n: In this chapter, we will mostly
be concerned with the PAC learnability of intersections of halfspaces.

The above version of the PAC model is also known as strong PAC learning,
to distinguish it from the weak PAC learning model of Kearns and Valiant [105]. In
the latter setting, the learner only needs to produce a hypothesis h with nonnegligi-
ble agreement with the target function f :

P
x�µ

Œf .x/ ¤ h.x/� <
1

2
�

1

nc

for a constant c > 1: A remarkable result, discovered by Schapire [191, 192], is
that strong and weak learning are equivalent, i.e., a sequence fCng is strongly PAC
learnable in polynomial time if and only if it is weakly PAC learnable in polynomial
time. In this light, we will use the two variants of the PAC model interchangeably,
as best fits the presentation. To further simplify the theorem statements, we will
use the term “PAC learnable” as a shorthand for “efficiently PAC learnable.” For
further background on computational learning theory, we refer the reader to the text
by Kearns and Vazirani [108].

Recall that throughout this thesis, we follow the convention whereby
Boolean functions take on values �1 and C1: In this chapter, however, it will be
useful to relax this rule in order to accommodate standard cryptographic notation.
Specifically, we will sometimes represent the range of a Boolean function by f0; 1g;

where 0 and 1 represent “false” and “true,” respectively.
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12.3 Cryptographic preliminaries
A lattice in n dimensions is the set fa1v1 C � � � C anvn W a1; : : : ; an 2 Zg of
all integral linear combinations of a given basis v1; : : : ; vn 2 Rn. There are sev-
eral well-studied computational problems on lattices. In the unique shortest vector
problem, denoted f .n/-uSVP, the goal is to find a shortest nonzero vector in the
lattice, provided that it is shorter by a factor of at least f .n/ than any other non-
parallel vector. In the shortest vector problem, denoted f .n/-SVP, the goal is to
approximate the length of a shortest nonzero vector within a factor of f .n/. Thus,
uSVP is a special case of SVP, distinguished by the uniqueness condition. In the
shortest independent vector problem, denoted f .n/-SIVP, the goal is to output a set
of n linearly independent lattice vectors of length at most f .n/�opt; where opt is the
minimum length over all sets of n linearly independent vectors from the lattice and
the length of a set is defined as the length of its longest vector. Note that all three
problems become harder as the approximation factor f .n/ > 1 decreases. There is
an extensive literature on the computational hardness depending on the approxima-
tion factor f .n/. For example, certain variants of the shortest vector problem are
known to be NP-hard if f .n/ is a small constant. On the other hand, it is known
that for larger values such as f .n/ D

p
n; some lattice problems are unlikely to be

NP-hard in that their NP-hardness would imply the collapse of the polynomial-time
hierarchy. We refer the reader to the excellent survey by Regev [184] for an exten-
sive treatment of the subject. In this chapter, we will be working with the setting
f .n/ D QO.n1:5/, an approximation factor for which the above three problems are
believed to be computationally difficult and in particular are not known to admit a
subexponential-time solution.

We will use public-key cryptosystems due to Regev [180, 181], whose se-
curity is based on the conjectured computational hardness of the above lattice prob-
lems uSVP, SVP, and SIVP. As Regev points out [181], an advantage of these prob-
lems from a cryptographic standpoint is the equivalence of their worst-case and
average-case complexity. In other words, an efficient algorithm for solving these
problems on a nonnegligible (inverse-polynomial) fraction of instances yields an
efficient algorithm for solving every instance. This contrasts with common number-
theoretic problems such as factoring or deciding quadratic residuosity. Furthermore,
lattice-based cryptosystems feature decryption functions that are completely dif-
ferent from modular exponentiation d.Y / D Y D mod N; the decryption function
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that is at the heart of virtually every number-theoretic cryptosystem. As a result,
lattice-based cryptosystems have the potential to lead to hardness results that ear-
lier, number-theoretic cryptosystems have not yielded.

The lattice-based cryptosystems below encrypt one-bit messages, 0 and 1:

The encryption is randomized, whereas the decryption is deterministic. Let
eK;r W f0; 1g ! f0; 1gpoly.n/ denote the encryption function corresponding to a choice
of private and public keys K D .Kpriv; Kpub/ and a random string r . In discussing
security, we will need the following notion.

DEFINITION 12.1 (Distinguisher). An algorithm A is said to distinguish between
the encryptions of 0 and 1 if for some universal constant c > 1;

ˇ̌̌̌
P

K;r
ŒA .Kpub; eK;r.1// D 1� � P

K;r
ŒA .Kpub; eK;r.0// D 1�

ˇ̌̌̌
>

1

nc
:

We will focus on those aspects of the cryptosystems that are relevant to the
hardness results of this chapter. For example, we will state the numeric ranges
of public and private keys without describing the key generation procedure. We
will follow the convention of denoting polynomially-bounded quantities (in n) by
lowercase letters, and superpolynomial ones by capital letters.

The uSVP-based cryptosystem. We start with a lattice cryptosystem, due to
Regev [180], whose security is based on the worst-case hardness of uSVP. Let n

be the security parameter. Denote N D 28n2

and m D cn2; where c is a universal
constant. Let γ .n/ be any function with γ .n/ D ω.n

p
log n/; where faster-growing

functions γ correspond to worse security guarantees but also a lower probability of
decryption error.

Private key: A real number H with
p

N 6 H < 2
p

N :

Public key: A vector .A1; : : : ; Am; i0/; where i0 2 f1; : : : ; mg and each Ai 2

f0; : : : ; N � 1g.

Encryption: To encrypt 0; pick a random set S � Œm� and output
P

i2S Ai mod N:

To encrypt 1; pick a random S � Œm� and output bAi0
=2cC

P
i2S Ai mod N:
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Decryption: On receipt of W 2 f0; : : : ; N � 1g; decrypt 0 if frac.WH=N / < 1=4;

and 1 otherwise. Here frac.a/ D minfdae � a; a � bacg denotes the distance
from a 2 R to the closest integer. By a standard argument, the security and
correctness of the cryptosystem are unaffected if we change the decryption
function to frac.AW / < 1=4; where A is a representation of H=N to within
poly.n/ fractional bits.

Correctness: The probability of decryption error, over the choice of private and
public keys and the randomness in the encryption, is expf�˝.γ .n/2=m/g:

Regev [180] showed that breaking the above cryptosystem would yield a
polynomial-time algorithm for the unique shortest vector problem. A more detailed
statement follows, cf. Theorem 4.5 and Lemma 5.4 of [180].

THEOREM 12.2 (Regev [180]). Assume that there is a polynomial-time distin-
guisher between the encryptions of 0 and 1. Then there is a polynomial-time so-
lution to every instance of .

p
n � γ .n//-uSVP.

We will set γ .n/ D n log n to make the probability of decryption error
negligible (inverse-superpolynomial) while guaranteeing QO.n1:5/-uSVP security.
In particular, Regev’s cryptosystem improves on the public-key cryptosystem of
Ajtai and Dwork [9] whose security is based on the worst-case hardness of O.n8/-
uSVP, an easier problem than QO.n1:5/-uSVP.

The SVP- and SIVP-based cryptosystem. The second cryptosystem [181] is
based on the worst-case quantum hardness of SVP and SIVP. Let n be the se-
curity parameter. Denote by p a prime with n2 < p < 2n2; and let m D

5.nC 1/.1C 2 log n/: Let γ .n/ be any function with γ .n/ D ω.
p

n log n/; where
faster-growing functions γ correspond to worse security guarantees but also a lower
probability of decryption error.

Private key: A vector s 2 Zn
p.

Public key: A sequence of pairs .a1; b1/; : : : ; .am; bm/; where each ai 2 Zn
p and

bi 2 Zp:
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Encryption: To encrypt 0; pick S � Œm� randomly and output .
P

i2S ai ;
P

i2S bi/:

To encrypt 1; pick S � Œm� randomly and output .
P

i2S ai ; bp=2c CP
i2S bi/: All arithmetic is modulo p.

Decryption: On receipt of .a; b/ 2 Zn
p � Zp; decrypt 0 if b � ha; si is closer to 0

than to bp=2c modulo p: Decrypt 1 otherwise. All arithmetic is modulo p.

Correctness: The probability of decryption error, over the choice of private and
public keys and the randomness in the encryption, is expf�˝.γ .n/2=m/g:

Regev [181] showed that breaking the above cryptosystem would imply a
polynomial-time quantum algorithm for solving SVP and SIVP. A more precise
statement is as follows, cf. Theorem 3.1 and Lemmas 4.4, 5.4 of [181].

THEOREM 12.3 (Regev [181]). Assume that there is a polynomial-time .possibly
quantum/ algorithm for distinguishing between the encryptions of 0 and 1. Then
there is a polynomial-time quantum solution to QO.n � γ .n//-SVP and QO.n � γ .n//-
SIVP.

We adopt the setting γ .n/ D
p

n log2 n to make the probability of decryp-
tion error negligible while guaranteeing QO.n1:5/-SVP and QO.n1:5/-SIVP security.
Observe that this second cryptosystem is preferable to the first in that it is based on
the worst-case hardness of a more general lattice problem (SVP rather than uSVP).
The disadvantage of the second cryptosystem is that breaking it would only yield a
quantum algorithm for SVP, as opposed to the first cryptosystem which would yield
a classical algorithm for uSVP.

12.4 From cryptography to learning theory
Cryptographic assumptions have long been used to obtain hardness results for PAC
learning. In a seminal work, Goldreich et al. [84] proved the first representation-
independent hardness result for PAC learning, ruling out an efficient algorithm for
learning polynomial-size Boolean circuits under the uniform distribution with or
without membership queries. Kearns and Valiant [105] used number-theoretic prob-
lems to obtain hardness results for NC1 circuits, constant-depth threshold circuits
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TC0, and deterministic finite automata. Kharitonov [111] obtained hardness results
for AC1 and NC1 circuits based on the conjectured hardness of the subset sum
problem. Kharitonov [112] later used the Blum-Blum-Shub pseudorandom genera-
tor [41] to obtain a hardness result for learning the circuit classes AC0 and TC0 that
holds even under the uniform distribution and if membership queries are allowed.

Hardness results such as the above exploit a fundamental relationship be-
tween the security of a public-key cryptosystem and the hardness of learning the
associated concept class. We rederive it below for completeness and extend it to al-
low for errors in the decryption process. This relationship is a natural consequence
of the ease of encrypting messages with the public key. A large pool of such en-
cryptions can be viewed as a set of training examples for learning the decryption
function. But learning the decryption function to a nonnegligible advantage would
mean breaking the cryptosystem. Assuming that the cryptosystem is secure, we can
thus conclude that it is not feasible to learn the decryption function. We formalize
this intuition as follows.

LEMMA 12.4 (cf. Kearns and Valiant [105]). Consider a public-key cryptosystem
for encrypting individual bits by n-bit strings. Let C be a concept class that con-
tains all the decryption functions dK W f0; 1gn ! f0; 1g of the cryptosystem, one for
each choice of key K D .Kpriv; Kpub/: Let

".n/ D P
K;r

ŒdK.eK;r.0// ¤ 0 or dK.eK;r.1// ¤ 1�

be the probability of decryption error, over the choice of keys and randomization in
the encryption. If C is weakly PAC-learnable in time t .n/ with t .n/".n/ D n�ω.1/;

then there is a distinguisher between the encryptions of 0 and 1 that runs in time
O.t.n//:

PROOF. For a pair of keys K D .Kpriv; Kpub/; let eK;r W f0; 1g ! f0; 1gn be the
randomized encryption function, indexed by the choice of random string r: Let
dK W f0; 1gn ! f0; 1g denote the matching decryption function. We will use the
assumed learnability of C to exhibit an algorithm A that runs in time O.t.n// and

252



has

P
K;r

ŒA .Kpub; eK;r.1// D 1� � P
K;r

ŒA .Kpub; eK;r.0// D 1� >
1

nc

for some universal constant c; as long as t .n/".n/ D n�ω.1/: The probability is
taken over the choice of keys, randomness in the encryption, and any internal ran-
domization in A : It will thus follow that A is the desired distinguisher.

Algorithm A takes as input a pair .Kpub; w/; where w 2 f0; 1gn is the
encryption of an unknown bit. First, A draws t .n/ independent training examples,
choosing each as follows.

1. Pick b D 0 or b D 1, with equal probability.

2. Pick r , an unbiased random string.

3. Create a training example heK;r.b/; bi:

Next, A passes the training examples to the assumed algorithm for learning C : As-
sume no decryption error has occurred, i.e., the decryption function dK is consistent
with all the generated examples. Then the learning algorithm outputs a hypothesis
h that approximates dK with a nonnegligible advantage:

P
b;r

Œh.eK;r.b// D dK.eK;r.b//� >
1

2
C

1

nc
; (12.1)

for some constant c. With this hypothesis in hand, algorithm A outputs h.w/ and
exits. It remains to show that A is indeed a distinguisher. We will first handle the
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case in which no decryption error occurs; call this event E. Then

P
K;r

ŒA .Kpub; eK;r.1// D 1 j E� � P
K;r

ŒA .Kpub; eK;r.0// D 1 j E�

D P
K;r

Œh.eK;r.1// D 1� � P
K;r

Œh.eK;r.0// D 1�

D 2 P
K;b;r

Œh.eK;r.b// D b� � 1

> 2

�
P

K;b;r
Œh.eK;r.b// D dK.eK;r.b//� � P

K;b;r
ŒdK.eK;r.b// ¤ b�

�
� 1

> 1C
2

nc
� 2".n/ � 1

D
2

nc
� 2".n/:

We now extend the analysis to account for possible decryption errors. Ob-
serve that the likelihood of a decryption error on a run of A is small:

PŒE� D E
K

ŒPŒE j K��

6 E
K

�
t .n/ � P

b;r
ŒdK.eK;r.b// ¤ b j K�

�
D t .n/ � P

K;b;r
ŒdK.eK;r.b// ¤ b�

6 t .n/".n/:
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This upper bound on PŒE�, along with the above analysis of the error-free case,
allows us to complete the proof of the desired claim, for all n large enough:

P
K;r

ŒA .Kpub; eK;r.1// D 1� � P
K;r

ŒA .Kpub; eK;r.0// D 1�

>

�
P

K;r
ŒA .Kpub; eK;r.1// D 1 j E� � P

K;r
ŒA .Kpub; eK;r.0// D 1 j E�

�
� 2 PŒE�

>
2

nc
� 2".n/ � 2t.n/".n/

>
1

nc
:

REMARK 12.5 (Klivans and Sherstov [128]). The above proof assumes that, given
consistent training examples, the learner is guaranteed to succeed in finding a hy-
pothesis h that satisfies (12.1). This makes for a shorter and simpler analysis. In
reality, we need only assume that the learner succeeds with probability 1=poly.n/;

and outputs “FAIL” otherwise. To accommodate this more general setting, it suf-
fices to have A output a random Boolean value whenever the learner fails.

12.5 Implementing uSVP-based decryption
The previous section demonstrated that if a public-key cryptosystem is secure, then
no concept class that can implement its decryption function is efficiently PAC-
learnable. In this section and the next, we will obtain implementations of the de-
cryption functions of Section 12.3 by intersections of quadratic threshold functions.
Naturally, this will lead to a hardness result for learning intersections of quadratic
threshold functions. We will obtain the main result of this chapter by noting that in-
tersections of quadratic threshold functions are no harder to learn than intersections
of halfspaces, a claim we formalize next.

LEMMA 12.6 (Klivans and Sherstov [128]). Assume that intersections of nε arbi-
trary .respectively, light/ halfspaces on f0; 1gn are weakly PAC-learnable. Then
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for any constant c > 0, intersections of nc arbitrary .respectively, light/ quadratic
threshold functions on f0; 1gn are weakly PAC-learnable.

PROOF. We will prove the “light” case only, the “arbitrary” case being closely
analogous. Let C be the concept class of intersections of nε light halfspaces on
f0; 1gn: Let C 0 be the concept class of intersections of nε light quadratic threshold
functions on f0; 1gn: Finally, let C 00 be the concept class of intersections of nc light
quadratic threshold functions.

We first observe that a polynomial-time PAC-learning algorithm for C
implies one for C 0. This is because every quadratic threshold function in
the n variables x1; : : : ; xn is a halfspace in the n C

�
n

2

�
variables x1; : : : ; xn;

x1x2; x1x3; : : : ; xn�1xn; which yields a polynomial-time map from the training and
testing examples for a quadratic threshold function to those for a halfspace. This
map is naturally viewed as a change of distribution in that a given distribution of
.x1; : : : ; xn/ will induce another, non-uniform distribution in the nC

�
n

2

�
new vari-

ables.

Finally, by a basic padding argument, the problem of PAC-learning the in-
tersection of nc halfspaces reduces to nε halfspaces for any constant c > 0: As a
result, a polynomial-time learning algorithm for C 0 implies one for C 00:

Recall that frac.a/ D minfdae�a; a�bacg denotes the distance from a 2 R
to the closest integer. Throughout this section, fag stands for the fractional part of
a 2 R: Define the predicate NEAR-INTWR! f0; 1g by

NEAR-INT.a/ D 1 , frac.a/ <
1

4
:

This predicate ignores the integral part of a; meaning that NEAR-INT.a/ D

NEAR-INT.fag/: Recall that the decryption function in the uSVP-based cryptosys-
tem is dA.W / D NEAR-INT.AW /; where A is a fixed real number and W is an
integer input, both with a polynomial number of bits. We will demonstrate how to
implement NEAR-INT.AW / with intersections of quadratic threshold functions.
A critical ingredient of our implementation is the “interval trick” of Siu and Roy-
chowdhury [209], an insightful idea that those authors used to obtain a depth-2
majority circuit for computing iterated addition.
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LEMMA 12.7 (Klivans and Sherstov [128]). Let A > 0 be a real number with k

fractional bits. Let f W f0; 1gn ! f0; 1g be given by

f .x/ D NEAR-INT

 
A

n�1X
j D0

xj C12j

!
:

Then f can be computed by the intersection of k quadratic threshold functions with
weight O.k44k/.

PROOF. Let fAg D :b1b2 : : : bk be the fractional part of A in binary, with bi 2

f0; 1g for all i: The integral part of A is irrelevant. Then

(
A

n�1X
j D0

xj C12j

)
D

(
kX

iD1

n�1X
j D0

bixj C12j �i

)
D

˚
kX

iD1

minfn�1;i�1gX
j D0

bixj C12j �i

	
;

where the last equation follows by dropping those terms bixj C12j �i that are whole
numbers. Define

S.x/ D

kX
iD1

minfn�1;i�1gX
j D0

bixj C12j �i

so that fA
Pn�1

j D0 xj C12j g D fS.x/g: Observe that S.x/ is a multiple of 2�k and
ranges between 0 and k: We will use degree-2 PTFs to identify intervals in Œ0; k� on
which NEAR-INT.S.x// D 1: A listing of the first few such intervals is as follows.
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Value of S.x/ in binary NEAR-INT.S.x//

. 0 0 0 0 . . . 0 0
:::

. 0 0 1 1 . . . 1 1

1

. 0 1 0 0 . . . 0 0
:::

. 1 1 0 0 . . . 0 0

0

. 1 1 0 0 . . . 0 1
:::

1 . 0 0 1 1 . . . 1 1

1

1 . 0 1 0 0 . . . 0 0
:::

1 . 1 1 0 0 . . . 0 0

0

1 . 1 1 0 0 . . . 0 1
:::

1 0 . 0 0 1 1 . . . 1 1

1

The characteristic function of an interval Œa; b� is given by

�
S.x/ �

aC b

2

�2

6

�
b � a

2

�2

;

which has a representation as a quadratic threshold function with weight O.k44k/:

To compute the negation of an interval, one replaces the inequality sign by a
greater-than sign. Finally, there are at most 2k C 1 intervals because every two
consecutive intervals, starting at the second, cover a distance of 1 on the interval
Œ0; k�. By forming the conjunction of the negations of the k intervals on which
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NEAR-INT.S.x// D 0; we obtain the desired representation of f as the intersec-
tion of k quadratic threshold functions with weight O.k44k/:

12.6 Implementing SVP- and SIVP-based decryption
We will now show how to implement the decryption function of the other cryptosys-
tem using quadratic threshold functions. Define the predicate NEAR-MIDpWZ !
f0; 1g by

NEAR-MIDp.a/ D 1 ,

ˇ̌̌
b �

jp

2

kˇ̌̌
6 minfb; p � bg;

where b 2 f0; 1; : : : ; p � 1g is the integer with a � b .mod p/: In this notation,
recall that the decryption function in the SVP- and SIVP-based cryptosystem is
given by ds1;:::;sn

.b; a1; : : : ; an/ D NEAR-MIDp.b �
P

aisi/; where all si ; ai ; and
b are integers in f0; : : : ; p � 1g D Zp. We will show how to compute ds1;:::;sn

with
intersections of degree-2 PTFs.

LEMMA 12.8 (Klivans and Sherstov [128]). Let ds1;:::;sn
W
�
f0; 1glog p

�nC1
! f0; 1g

be the function defined by

ds1;:::;sn
.x/ D NEAR-MIDp

 log p�1X
iD0

2ix0;i �

nX
j D1

sj

log p�1X
iD0

2ixj;i

!
; (12.2)

where all si are integers in f0; : : : ; p � 1g. Then ds1;:::;sn
can be computed by the

intersection of n log p quadratic threshold functions with weight O.p2n2 log2 p/:

PROOF. Define

S.x/ D

log p�1X
iD0

2ix0;i �

nX
j D1

log p�1X
iD0

.2isj mod p/xj;i :
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Thus, S.x/ is the original weighted sum in (12.2) with the coefficients reduced
modulo p: It is clear that ds1;:::;sn

.x/ D NEAR-MIDp.S.x//: The integer S.x/

ranges between �.p�1/n log p and p�1; an interval of length less than pn log p.
As in the proof of Lemma 12.7, this range can be divided into consecutive intervals
on which ds1;:::;sn

.x/ is constant (i.e., does not change value within an interval).
Every two consecutive intervals cover a length of p units. Thus, there are a total
of 6 2.pn log p/=p D 2n log p consecutive intervals. By selecting the n log p

intervals on which ds1;:::;sn
.x/ D 0 and taking the conjunction of their negations,

we can compute ds1;:::;sn
exactly. It remains to note that the negation of an interval

Œa; b� has characteristic function

�
S.x/ �

aC b

2

�2

>

�
b � a

2

�2

;

which can be represented by a quadratic threshold function with weight
O.p2n2 log2 p/:

We additionally observe that the decryption function in the SVP- and SIVP-
based cryptosystem can be computed by a depth-3 arithmetic circuit.

LEMMA 12.9 (Klivans and Sherstov [128]). Let ds1;:::;sn
W
�
f0; 1glog p

�nC1
! f0; 1g

be the function defined by (12.2), where all si are integers in f0; : : : ; p � 1g. Then
ds1;:::;sn

can be computed by a depth-3 arithmetic circuit of size polynomial in p

and n:

PROOF. Set S.x/ as in the proof of Lemma 12.8. Then S.x/ is an integer in the
range R D Œ�.p � 1/n log p; p � 1� \ Z and completely determines the value
of ds1;:::;sn

.x/: Now, let g be a polynomial such that g.S.x// D ds1;:::;sn
.x/ for all

Boolean inputs x: It can be constructed by interpolating ds1;:::;sn
on the range of

S.x/ via the Lagrange formula:

g.y/ D
X
r2R

NEAR-MIDp.r/
Y

r 02R;
r 0¤r

y � r 0

r � r 0
:
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Since the range R contains poly.p; n/ integers, g.S.x// can be computed by a
depth-3 arithmetic circuit of size poly.p; n/ with input S.x/ and summation gates
at the bottom. But S.x/ is a sum of poly.p; n/ terms, each a singleton variable xi or
a constant. Thus, ds1;:::;sn

can be computed directly by a depth-3 arithmetic circuit
of size poly.p; n/ with inputs x.

12.7 Hardness of learning intersections of halfspaces
Based on the assumed computational hardness of the cryptosystems in Section 12.3
and the reductions of Sections 12.4–12.6, we are in a position to prove the desired
hardness results for learning intersections of halfspaces. The reader may find it
helpful to review the definition of light polynomial threshold functions from Sec-
tion 2.2.

THEOREM 12.10 (Klivans and Sherstov [128]). Assume that intersections of nε

halfspaces on f0; 1gn are PAC-learnable for some constant ε > 0: Then there is a
polynomial-time solution to QO.n1:5/-uSVP.

PROOF. Let C denote the concept class of intersections of nε halfspaces. Let C 0

denote the concept class of intersections of nc quadratic threshold functions, for a
sufficiently large constant c > 0: By Lemma 12.6, the assumed PAC-learnability of
C implies the PAC-learnability of C 0. By Lemma 12.7, all the decryption functions
in the uSVP-based cryptosystem are in C 0. A PAC-learning algorithm for C 0 would
thus yield a distinguisher between the encryptions of 0 and 1 by Lemma 12.4 and
hence an efficient solution to O.

p
n � γ .n//-uSVP for γ .n/ D n log n by Theo-

rem 12.2.

REMARK 12.11 (Klivans and Sherstov [128]). Oded Regev observed [182] that
Theorem 12.10 is also valid for light halfspaces, rather than arbitrary ones as stated.
To see this, note that in Regev’s first cryptosystem [180, Lem. 5.2], except with
probability exponentially small in n; the quantity frac.AW / is bounded away from
1=4 by a small constant. Therefore, with extremely high probability, we can ignore
many of the least significant bits of AW , as these bits can only change the value of
AW by o.1/. This allows one to restrict the sum S.x/ in Lemma 12.7 to contain
only the terms bixj 2j �i with j � i > �C log n; for a sufficiently large constant
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C > 0: The integral representation of the resulting threshold function would have
polynomial weight, leading to hardness for intersections of light halfspaces.

THEOREM 12.12 (Klivans and Sherstov [128]). Assume that intersections of nε

light halfspaces on f0; 1gn are PAC-learnable for some constant ε > 0: Then there
is a polynomial-time quantum solution to QO.n1:5/-SVP and QO.n1:5/-SIVP.

PROOF. Let C denote the concept class of intersections of nε light halfspaces,
and let C 0 denote the concept class of intersections of nc light quadratic thresh-
old functions. By Lemma 12.6, the assumed PAC-learnability of C implies the
PAC-learnability of C 0. By Lemma 12.8, the decryption function in the uSVP-
based cryptosystem is in C 0. A PAC-learning algorithm for C 0 would thus yield
a distinguisher between the encryptions of 0 and 1 by Lemma 12.4 and, as a re-
sult, an efficient quantum solution to QO.n � γ .n//-SVP and QO.n � γ .n//-SIVP for
γ .n/ D

p
n log2 n by Theorem 12.3.

Theorems 12.10 and 12.12 both imply a hardness result for PAC learning
polynomial-size depth-2 circuits of majority gates, a concept class commonly de-
noted by bLT2. To prove this, we will need a result regarding light threshold circuits,
due to Goldmann et al. [82] and Goldmann and Karpinski [83]. Let bLTd denote
the class of depth-d polynomial-size circuits of threshold gates with polynomially-
bounded weights. Let eLTd denote the class of depth-d polynomial-size threshold
circuits in which only the output gate is required to have polynomially-bounded
weights.

THEOREM 12.13 (Bounded vs. unbounded weights [82, 83]). For any constant d ,

bLTd D
eLTd :

We are now in a position to prove the desired hardness result for depth-2
majority circuits.

THEOREM 12.14 (Klivans and Sherstov [128]). Assume that depth-2 polynomial-
size circuits of majority gates are PAC learnable. Then there is a polynomial-time
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solution to QO.n1:5/-uSVP and polynomial-time quantum solutions to QO.n1:5/-SVP
and QO.n1:5/-SIVP.

PROOF. Let ^bLT1 (respectively, ^LT1) denote the concept classes of intersections
of polynomially many light (respectively, arbitrary) halfspaces. By Theorems 12.10
and 12.12, it suffices to show that^bLT1 �

bLT2 and^LT1 �
bLT2. The first statement

is clear: each light halfspace is already a majority gate, with the inputs suitably
negated or replicated, and the top gate AND.f1; f2; : : : ; fs/ can be replaced by a
majority gate MAJ.�sC1; f1; f2; : : : ; fs/: To prove that ^LT1 �

bLT2; observe that
^LT1 �

eLT2 by an analogous argument and eLT2 D
bLT2 by Theorem 12.13.

Independently of our work, Feldman et al. [68] obtained a result similar to
Theorem 12.14. Specifically, those authors proved that a polynomial-time algo-
rithm for learning depth-2 polynomial-size majority circuits would break the Ajtai-
Dwork cryptosystem. In contrast, our work makes use of more recent cryptosystems
due to Regev, whose security is based on weaker assumptions.

12.8 Hardness of learning arithmetic circuits and beyond
Several efficient, sparse polynomial interpolation algorithms are known in the case
when the learner has query access to the unknown polynomial [151, 193, 129].
If, in addition to membership queries, the learner can make equivalence queries,
Klivans and Shpilka [119] showed how to exactly learn restricted types of depth-3
arithmetic circuits via multiplicity automata techniques [34]. Here, we show that if
the learner receives random examples only, then learning depth-3 polynomial-size
arithmetic circuits is as hard as solving QO.n1:5/-SVP in quantum polynomial-time.

THEOREM 12.15 (Klivans and Sherstov [128]). Assume that depth-3 polynomial-
size arithmetic circuits are PAC-learnable in polynomial time. Then there is a
polynomial-time quantum solution to QO.n1:5/-SVP and QO.n1:5/-SIVP.

PROOF. Invoke Lemma 12.9 and argue precisely as was done in the proofs of The-
orems 12.10 and 12.12.
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A natural question to ask is whether our approach could yield hardness re-
sults for other concept classes. Particularly interesting candidates are AC0 and,
more ambitiously, polynomial-size DNF formulas. Here we prove that the decryp-
tion functions of Regev’s cryptosystems contain PARITY as a subfunction and thus
are not computable in AC0

: We start with the SVP- and SIVP-based cryptosystem,
which admits an easier proof.

PROPOSITION 12.16 (Klivans and Sherstov [128]). The decryption function of
the SVP- and SIVP-based cryptosystem, defined by fs1;:::;sn

.a1; : : : ; an; b/ D

NEAR-MIDp.b �
P

aisi/, is not in AC0
:

PROOF. Let x1; x2; : : : ; xn 2 f0; 1g: Note that

NEAR-MIDp

 
p � 1

2

nX
iD1

xi

!
D NEAR-MIDp

 
p

2

nX
iD1

xi

!
D PARITY.x1; : : : ; xn/:

The first equality holds because 1
2

P
xi 6 1

2
n� p: Thus, PARITY.x1; : : : ; xn/ is

a subfunction of NEAR-MIDp.b�
P

aisi/: Since AC0 circuits cannot compute the
PARITY function [75, 91], the claim follows.

Recall now that the decryption function in the uSVP-based cryptosystem is
dA.X/ D NEAR-INT.AX/; where A is a fixed real number and X is an integer
input. For convenience, we assume that X has nC 1 bits rather than n:

PROPOSITION 12.17 (Klivans and Sherstov [128]). The decryption function of the
uSVP-based cryptosystem, dA.X/ D NEAR-INT.AX/, is not in AC0

:

PROOF. We will show that dA.X/ computes the PARITY function on a subset of
�.n= log n/ bits from among x1; : : : ; xn; with the other bits set to 0: The claim
will follow. Let � D 3 C log n and A D

Pn=�
iD0 2�i��1: For convenience

of notation, we assume that � j n: In what follows, we show that dA.X/ D
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PARITY.x0; x�; x2�; : : : ; xn/ when xi D 0 for all i 62 f0; �; 2�; : : : ; ng: We have

dA.X/ D NEAR-INT .AX/

D NEAR-INT

� 
n=�X
iD0

1

2i�C1

!�
n=�X
j D0

xj�2j�

��

D NEAR-INT

 X
i

X
j >i

xj�2j�

2i�C1
C

X
i

xi�2i�

2i�C1
C

X
i

X
j <i

xj�2j�

2i�C1

!
:

The first summation features only whole numbers and can thus be dropped. The
second summation is precisely 1

2
.x0 C x� C � � � C xn/; a multiple of 1

2
: The third

summation does not exceed 1
8
; by the choice of � and the geometric series, and

thus does not affect the result. Thus,

dA.X/ D NEAR-INT
�x0 C x� C � � � C xn

2

�
D PARITY.x0; x�; : : : ; xn/:
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Chapter 13

Lower Bounds for Statistical Query Learning
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In the previous chapter, we proved representation-independent, crypto-
graphic hardness results for learning intersections of halfspaces on f0; 1gn: Here,
we complement those results with unconditional lower bounds for learning inter-
sections of halfspaces in Kearns’ well-studied statistical query model [104]. In par-
ticular, we prove that any statistical-query algorithm for learning the intersection
of
p

n majority functions on f0; 1gn runs in time expf˝.
p

n/g: This lower bound
is essentially tight and is an exponential improvement on previous work. In addi-
tion, we derive near-tight, exponential lower bounds on the threshold density of this
concept class, placing it beyond the scope of Jackson’s influential Harmonic sieve
algorithm [98].

13.1 Introduction
Recall from the previous chapter that learning intersections of halfspaces is a fun-
damental and well-studied problem in computational learning theory. In addition
to generalizing well-known concept classes such as DNF formulas, intersections
of halfspaces are capable of representing arbitrary convex sets. While efficient al-
gorithms exist for PAC learning a single halfspace, the problem of learning the
intersection of even two halfspaces remains an unresolved challenge in the area. In
the previous chapter, we proved the first representation-independent, cryptographic
hardness results for PAC learning intersections of halfspaces. Furthermore, the
problem is known to be NP-hard for proper learning, where additional restrictions
are placed on the learner’s output hypothesis [10].

The hardness results surveyed above are conditional in that they depend
on widely believed but unproven assumptions from cryptography or complexity
theory. Here, we complement that line of work by proving lower bounds that are
unconditional but valid only for a restriction of the PAC model. Specifically, we
study the problem of learning intersections of halfspaces in Kearns’ statistical query
model [104], described in detail in Section 13.2. The statistical query model differs
from the PAC model in that instead of individual labeled examples, the learner only
receives statistical information about the unknown function. Efficient algorithms
in this model are particularly useful because of their inherent robustness to noisy
training data. Perhaps surprisingly, virtually all known PAC learning algorithms
can be adapted to work efficiently in the statistical query model.
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A tight measure of the learning complexity of a concept class C under a
given distribution µ in the statistical query model is the statistical query dimension
sqµ.C /; introduced in Section 2.5 and already used in other contexts in this thesis.
We focus on MAJn;k; the concept class of conjunctions of up to k majority functions
in n variables. Our main result, derived in Section 13.6, is as follows.

THEOREM 13.1 (Klivans and Sherstov [127]). There are .explicitly given/ distri-
butions µ on f0; 1gn such that

sqµ.MAJn;k/ D

˚
max

˚
n˝.k= log log n/; n˝.log k/

	
if k 6 log n;

n˝.k= log k/ if log n 6 k 6
p

n:

We show that Theorem 13.1 is essentially tight and is an exponential im-
provement on previous lower bounds [37]. An illustrative instantiation of our re-
sult is as follows: for any constant 0 < ε 6 1=2; the intersection of nε majority
functions has statistical query dimension expf˝.nε/g; a known upper bound being
expfO.nε log3 n/g:

In addition, we study the threshold density of intersections of k majority
functions. As we discuss in Section 13.3, threshold weight and threshold den-
sity are useful parameters of a Boolean function from the standpoint of uniform-
distribution learning. In particular, the celebrated algorithm due to Jackson [98]
efficiently learns any concept class with small threshold weight. In Sections 13.4
and 13.5, we show that MAJn;k has high threshold weight and density and is thus
not amenable to Jackson’s techniques. More precisely, we prove the following state-
ment.

THEOREM 13.2 (Klivans and Sherstov [127]). Let k be an integer, 2 6 k 6
p

n.
Then there is a function f 2 MAJn;k with

dns.f / > n˝.k= log k/n˝.log n= log log n/:

The lower bound in Theorem 13.2 is essentially optimal, in light of earlier
work by Klivans et al. [121].
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13.2 Learning via statistical queries
The statistical query model, introduced by Kearns [104], is an elegant restriction
of the PAC model. In both cases, one considers a family C of Boolean functions
X ! f�1;C1g defined on some finite set X: In both cases, one fixes a distribu-
tion µ on X as well as a function f 2 C : The learner, who does not know µ or
f; is faced with the problem of constructing a hypothesis hWX ! f�1;C1g that
closely approximates f with respect to µ; in the sense that EµŒf .x/ ¤ h.x/� < ε
for a small constant ε: The difference between the PAC model and the SQ model
resides in the kind of information that the learner receives about the unknown func-
tion f: In the PAC model, the learner has access to individual labeled examples
.x.1/; f .x.1///; : : : ; .x.m/; f .x.m///; where x.1/; : : : ; x.m/ 2 X are independent and
distributed identically according to µ: In the SQ model, the learner no longer sees
individual labeled examples. Instead, the learner may posit any polynomial-time
computable function χ W f0; 1gn � f�1;C1g ! f�1;C1g; called a statistic, and
receive the quantity

E
x�µ

Œχ .x; f .x//�; (13.1)

up to a small additive error called the tolerance, τ:

In light of the Chernoff bound, the PAC learner can simulate any statistical
query by drawing �.log 1

τ / labeled examples and estimating the expectation (13.1).
In other words, any SQ algorithm can be simulated by a PAC algorithm, and hence
the SQ model can be viewed as a restriction of the PAC model. A compelling
advantage of SQ algorithms is that they admit simulations even in the PAC model
with random classification noise, when the individual labeled examples each have
a small independent probability of getting the wrong label. From that standpoint,
having an efficient SQ learner for a concept class is preferable to having an efficient
PAC learner. It is a remarkable fact, however, that a vast majority of efficient PAC
learning algorithms designed to date have efficient counterparts in the SQ model.

In this chapter, we will mostly be concerned with lower bounds for SQ
learning. Such lower bounds can be proved in terms of the statistical query dimen-
sion of the concept class, a versatile complexity measure introduced in Section 2.5
and already used in other contexts in this thesis. We have:
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THEOREM 13.3 (Yang [222, Cor. 1]). Let C be a concept class and µ a probability
distribution such that sqµ.C / D N: Then if all queries are made with tolerance at
least N �1=3; at least

N 1=3

2
� 1

queries are required to learn C to error 1=2 � 1=.2N 1=3/ with respect to µ in the
statistical query model.

In other words, concept classes with high statistical query dimension re-
quire many statistical queries even when one only seeks to achieve classification
accuracy slightly above random guessing. Theorem 13.3 follows up and improves
on an earlier result due to Blum et al. [37], who additionally proved matching upper
bounds on the number of statistical queries in terms of the statistical query dimen-
sion. In this sense, the statistical query dimension sqµ.C / is a tight measure of the
complexity of learning C with respect to µ in the statistical query model. We refer
the reader to the textbook by Kearns and Vazirani [108] for further results on the
SQ model.

13.3 Threshold weight and density in learning
The threshold weight and density of Boolean functions, reviewed in Section 2.2,
are useful quantities from the standpoint of learning with respect to the uniform
distribution. Key to this application is the elegant algorithm of Kushilevitz and
Mansour [136], which efficiently identifies the dominant Fourier coefficients of a
function.

THEOREM 13.4 (Kushilevitz and Mansour [136]). Let f W f0; 1gn ! f�1;C1g be
a given Boolean function. Let ε > 0 and δ > 0 be given parameters. There is an
explicit algorithm that runs in time polynomial in .n=ε/ log.1=δ/ and outputs, with
probability at least 1 � δ; every set S � f1; 2; : : : ; ng for which j Of .S/j > ε: The
algorithm only uses query access to f:
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The Harmonic sieve, a celebrated algorithm due to Jackson [98], uses The-
orem 13.4 to learn the concept class C of functions f W f0; 1gn ! f�1;C1g with
W.f / 6 W to any accuracy ε > 0 with respect to the uniform distribution, in time
polynomial in nW=ε: In particular, Jackson’s algorithm learns the concept class of
polynomial-size DNF formulas under the uniform distribution, using membership
queries, in polynomial time.

In light of the above, threshold weight can be viewed as a criterion for strong
learnability with respect to the uniform distribution. Threshold density, on the other
hand, can be viewed as a criterion for weak learnability with respect to the uniform
distribution. This observation is based on the following result of Bruck [44].

THEOREM 13.5 (Bruck [44]). Let f W f0; 1gn ! f�1;C1g be a given Boolean func-
tion. Then for all d;

dns.f; d/ >
1

maxjS j6d j
Of .S/j

:

In particular,

dns.f / >
1

kf k∞

:

As an application to weak learning, we have:

PROPOSITION 13.6 (Klivans and Sherstov [127]). Let C be a family of Boolean
functions f W f0; 1gn ! f�1;C1g: Put L D maxf 2C dns.f /: Then C is learnable
to accuracy 1

2
C

1
2L

under the uniform distribution in time polynomial in n and L;

using membership queries.

PROOF. Let f 2 C be the unknown target function. In time polynomial in nL; the
algorithm of Theorem 13.4 identifies all characters χS W f0; 1gn ! f�1;C1g with
correlation 1=L or more with f: It thus suffices to show that k Of k∞ > 1=L: That, in
turn, is immediate from Theorem 13.5 and the fact that dns.f / 6 L:
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Key to our analysis of threshold density in this chapter is the family of bent
Boolean functions f W f0; 1gn ! f�1;C1g; defined by the property that j Of .S/j D

2�n=2 for all S: In light of Parseval’s identity (2.1), bent functions are precisely
those Boolean functions f that minimize k Of k∞: Two important bent functions are
the inner product function IPnW f0; 1g2n ! f�1;C1g; defined by

IPn.x/ D

nM
iD1

.x2i�1 ^ x2i/;

and the complete quadratic function CQnW f0; 1gn ! f�1;C1g; defined for even n

by

CQn.x/ D
M

16i<j6n

.xi ^ xj /:

It is known [44] and easy to see that

CQn.x/ D

˚
1; if jxi j � 0 .mod 4/;

1; if jxi j � 1 .mod 4/;

�1; otherwise.

We have:

THEOREM 13.7 (Bruck [44]). The function IPn is bent for all n: The function CQn

is bent for all even n:

Our analysis of threshold density requires the following observation.

LEMMA 13.8 (Klivans and Sherstov [127]). Let f W f0; 1gn ! f�1;C1g be a given
function. Define F W f0; 1gm ! f�1;C1g by F.x/ D f .χ1; : : : ;χn/; where each χi

is a parity function on f0; 1gm or the negation of a parity function on f0; 1gm: Then

dns.F / 6 dns.f /:
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PROOF. Immediate from the definition of threshold density and the fact that the
product of characters is another character.

Given a function f W f0; 1gn ! f�1;C1g; recall that a reflection of f is any
function of the form g.x/ D f .x ˚ y/ for some fixed y 2 f0; 1gn: The lower
bounds in this chapter target be the concept class MAJn;k; defined as the set of all
functions f W f0; 1gn ! f�1;C1g expressible as

f .x/ D

k̂

iD1

sgn

 
nX

j D1

σij .�1/xi

!

for some coefficients σij 2 f0; 1g: In other words, MAJn;k is the concept class of
intersections of k majority functions.

13.4 Threshold density of the intersection of two majorities
We start our threshold density analysis with the intersection of two majority func-
tions. An essential ingredient in our proof is the following result of O’Donnell and
Servedio [163, Thm. 17].

THEOREM 13.9 (O’Donnell and Servedio [163]). Consider the Boolean function
f .x; y/ D MAJ.x1; : : : ; xn/ ^MAJ.y1; : : : ; yn/: Then

deg˙.f / D ˝

�
log n

log log n

�
:

Krause and Pudlák [132, Prop. 2.1] discovered an elegant procedure for
converting Boolean functions with high threshold degree into Boolean functions
with high threshold density. Their construction maps a given function f W f0; 1gn !

f�1;C1g to the function f KPW .f0; 1gn/3 ! f�1;C1g given by

f KP.x; y; ´/ D f .: : : ; .´i ^ xi/ _ .´i ^ yi/; : : : /:
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We have:

THEOREM 13.10 (Krause and Pudlák [132]). For every f W f0; 1gn ! f�1;C1g;

dns.f KP/ > 2deg˙.f /:

A final ingredient in our proof is a procedure for amplifying the threshold
degree of a given function by composition with an XOR function.

LEMMA 13.11 (Klivans and Sherstov [127]). Let f W f0; 1gn ! f�1;C1g be a
given function. Define F W f0; 1gnk ! f�1;C1g by

F.x/ D f

 
: : : ;

kM
j D1

xij ; : : :

!
:

Then

deg˙.F / D k deg˙.f /:

PROOF. Our proof draws inspiration from an earlier result due to O’Donnell and
Servedio [163, Thm. 13]. The upper bound on the threshold degree of F is im-
mediate. To prove the lower bound, let d D deg˙.f / and note that Theorem 4.6
provides a distribution µ on f0; 1gn with the property that bµf .S/ D 0 whenever
jS j < d: Letting λ be the distribution on f0; 1gkn given by

λ.x/ D cµ

 
: : : ;

nM
j D1

xij ; : : :

!
;

where c > 0 is a normalizing constant, it is straightforward to verify that cλF .S/ D

0 whenever jS j < kd: By Theorem 4.6, the properties of λ force the lower bound
deg˙.F / > kd:
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We are now in a position to prove the main result of this section, a superpoly-
nomial lower bound on the threshold density of the intersection of two majorities.

THEOREM 13.12 (Klivans and Sherstov [127]). The function MAJ.x1; : : : ; xn/ ^

MAJ.y1; : : : ; yn/ has threshold density n˝.log n= log log n/.

PROOF. Let t and k be integers to be fixed later. Define f W f0; 1g2t ! f�1;C1g

by f .x/ D MAJ.x1; : : : ; xt/ ^ MAJ.xtC1; : : : ; x2t/: Consider the function
f ˚W .f0; 1gk/2t ! f�1;C1g given by

f ˚.x/ D f

 
: : : ;

kM
j D1

xi;j ; : : :

!
:

Lemma 13.11 implies that

deg˙.f ˚/ D k deg˙.f /:

Consider now the function f ˚ KP. For bits a; b; c 2 f0; 1g, we have

.c ^ a/ _ .c ^ b/ D
1C .�1/c

2
� .�1/a

C
1 � .�1/c

2
� .�1/b:

As a result,

f ˚ KP.x; y; ´/ � 
kY

iD1

q1;i C � � � C

kY
iD1

qt;i > 0

!^ 
kY

iD1

qtC1;i C � � � C

kY
iD1

q2t;i > 0

!
;

where qi;j D .1C .�1/´i;j /.�1/xi;j C .1 � .�1/´i;j /.�1/yi;j :

The above construction shows that f ˚ KP is computed by the intersection of
two functions with threshold weight at most 2t4k C 1 each. Lemma 13.8 implies
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that if the intersection of two majorities, each on a distinct set of 2t4kC1 variables,
has threshold density at most L; then dns.f ˚ KP/ 6 L. Theorem 13.10, on the other
hand, implies that f ˚ KP has threshold density at least 2deg˙.f ˚/ D 2k deg˙.f /. In
view of Theorem 13.9 we conclude that the intersection of two majorities, each on
2t4k C 1 variables, has threshold density expf˝.k log t= log log t /g: The theorem
follows by setting t D b

p
n=3c and k D b1

4
log nc:

Using rational approximation techniques, Beigel et al. [33] showed among
other things that the function f .x; y/ D MAJ.x1; : : : ; xn/ ^MAJ.y1; : : : ; yn/ has
threshold density nO.log n/: Thus, the lower of Theorem 13.12 is nearly tight. Several
chapters later, in Theorem 16.33, we will obtain a tight lower bound of n˝.log n/

using additional techniques. We also note that a weaker lower bound of nω.1/ on
the threshold density of f can be obtained by using, in place of Theorem 13.9,
the simpler result of Minsky and Papert [153] that deg˙.f / D ω.1/: That would
suffice to show that the intersection of even two majorities has superpolynomial
threshold density.

13.5 Threshold density of the intersection of ω.1/ majorities
We continue our study of threshold density with intersections of k D ω.1/ majori-
ties. For small k; the density lower bounds in this section are somewhat weaker
than those obtained in the previous section for k D 2: However, the proofs below
rely solely on the fundamental Theorem 13.5 and are thus considerably simpler.
Furthermore, it is the constructions in this section that will allow us to prove our
sought SQ lower bounds.

Our first construction is based on a reduction to the inner product function.

LEMMA 13.13 (Klivans and Sherstov [127]). Let k 6 2no.1/

. Let α > 0 be a
sufficiently small absolute constant. Fix an integer m 6 α log n � log k: Then there
are explicitly given functions χ1;χ2; : : : ;χn; each a parity or the negation of a
parity on f0; 1g2m; such that for each fixed y 2 f0; 1g2m one has

IPm.x ˚ y/ � fy.χ1;χ2; : : : ;χn/
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for some fy 2 MAJn;k:

PROOF. Let g1; g2; : : : ; glog k be copies of the inner product function, each on a
disjoint set of variables Vi with jVi j D 2v for some v D v.n; k/ to be chosen later.
Thus, g D

L
gi is an inner product function on 2v log k variables. At the same

time, g is computable by the conjunction of 2log k�1 < k functions, each of the form
h1 _ h2 _ � � � _ hlog k; where hi 2 fgi ;:gig. Each conjunction h1 _ h2 _ � � � _ hlog k

is logically equivalent to

h1 C h2 C � � � C hlog k > 1 � log k;

which is in turn equivalent to

2vh1 C 2vh2 C � � � C 2vhlog k > 2v.1 � log k/: (13.2)

Every hi is a bent function on the 2v variables Vi , and thus 2vhi is simply the sum
of the 4v parities on Vi , each with a plus or a minus sign.

Create a new set of variables U D fχ1;χ2; : : : g as follows. U will contain
a distinct variable for each parity on Vi (for each i D 1; 2; : : : ; log k) and one for
its negation. In addition, U will contain 2v.log k � 1/ < 2v log k variables, each of
which corresponds to the constant 1. As a result, each of the k polynomial thresh-
old functions of the form (13.2) is a majority function in terms of U . Therefore,
the inner product function on 2v log k variables is computable by f .χ1;χ2; : : : / for
some f 2 MAJjU j;k: Furthermore, for every fixed y 2 f�1;C1g2v log k, the reflec-
tion IPv log k.x˚ y/ is computable by fy.χ1;χ2; : : : / for some fy 2 MAJjU j;k This
is because for each parity, U D fχ1;χ2; : : : g additionally contains its negation.

It remains to show that jU j 6 n. Setting v D 1
2
.log n� log log k�2/ yields

jU j D 2 � 4v log k C 2v log k 6 n: Thus, for k 6 2no.1/

the above construction
computes inner product on the claimed number of variables:

2v log k D .log n � log log k � 2/ log k D ˝.log n � log k/:
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A consequence of Lemma 13.13 for threshold density is as follows.

THEOREM 13.14 (Klivans and Sherstov [127]). Let k 6 2no.1/

. Then there is a
function f 2 MAJn;k with

dns.f / > n˝.log k/:

PROOF. Let k 6 2no.1/

. By Lemma 13.13, there is a function f 2 MAJn;k and
a choice of parities or negated parities χ1; : : : ;χn such that f .χ1; : : : ;χn/ com-
putes the inner product function on 2m D ˝.log n � log k/ variables. Since all
the Fourier coefficients of f .χ1; : : : ;χn/ are 2�m in absolute value, it follows from
Theorem 13.5 that f .χ1; : : : ;χn/ has threshold density at least 2m D n˝.log k/: By
Lemma 13.8, the same lower bound holds for the function f .x1; : : : ; xn/.

We now prove a different lower bound on the threshold density of inter-
section of k majorities. For k � log log n; the new bound will be significantly
stronger than that of Theorem 13.14. The new construction is based on the com-
plete quadratic function.

LEMMA 13.15 (Klivans and Sherstov [127]). Let k 6
p

n. Let α > 0 be a suffi-
ciently small absolute constant. Fix an integer

m 6 αmin
�

k log n

log log n
;
k log n

log k

�
:

Then there are explicitly given functions χ1;χ2; : : : ;χn; each a parity or the nega-
tion of a parity on f0; 1gm; such that for every y 2 f0; 1gm one has

CQ.x ˚ y/ D fy.χ1;χ2; : : : ;χn/

for some fy 2 MAJn;k.
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PROOF. Consider the function CQm: Since CQm depends only on the sum of the
input bits, we have

CQ.x/ D 1 ”

^
s2S

�X
.�1/xi ¤ s

�
;

where S � f�m; : : : ; 0; : : : ; mg and jS j 6 m. The conjunction of t D jS j=k of
these predicates can be expressed as

�X
.�1/xi � s1

�2 �X
.�1/xi � s2

�2

� � �

�X
.�1/xi � st

�2

> 0; (13.3)

where s1; : : : ; st 2 S .

Consider the inequality .
P

.�1/xi C m/2t > 0. Multiplying out the left
member yields the sum of exactly .2m/2t parities, not all distinct. Construct a
set of variables U D fχ1;χ2; : : : g to contain a variable for each of these .2m/2t

parities and their negations. Over U , the function .
P

.�1/xi C m/2t > 0 is a ma-
jority function. In fact, any Boolean function of the form (13.3) is a majority over
U . Hence, CQm.x/ is computable by f .χ1;χ2; : : : / for some f 2 MAJjU j;k .
Furthermore, for every fixed y 2 f0; 1gm, the reflection CQm.x ˚ y/ is com-
putable by fy.χ1;χ2; : : : / for some fy 2 MAJjU j;k . This is because for each parity,
U D fχ1;χ2; : : : g additionally contains its negation. Finally, it is straightforward
to check that jU j 6 n:

As an application to threshold density, we obtain:

THEOREM 13.16 (Klivans and Sherstov [127]). Let k 6
p

n. Then there exists
f 2 MAJn;k with

dns.f / > min
n
n˝.k= log log n/; n˝.k= log k/

o
:

PROOF. Let k 6
p

n. By Lemma 13.15, there is a function f 2 MAJn;k and
a choice of parities or negations of parities χ1; : : : ;χn such that f .χ1; : : : ;χn/

279



computes CQm on m D minf˝.k log n= log log n/; ˝.k log n= log k/g variables.
Since the Fourier coefficients of f .χ1; : : : ;χn/ are all 2�m=2 in absolute value,
Theorem 13.5 implies that f .χ1; : : : ;χn/ has threshold density at least 2m=2: By
Lemma 13.8, the same lower bound is valid for f .x1; : : : ; xn/.

Combining the results for far, we obtain our main lower bound on the thresh-
old density of intersections of majorities.

THEOREM 13.2 (Klivans and Sherstov [127], restated). Let k be an integer, 2 6
k 6
p

n. Then there is a function f 2 MAJn;k with

dns.f / > n˝.k= log k/n˝.log n= log log n/:

PROOF. Immediate from Theorems 13.12 and 13.16.

The lower bound in Theorem 13.2 is essentially optimal. In particular, Kli-
vans et al. [121, Thm. 29] showed in earlier work that every function in MAJn;k has
threshold density nO.k�log k�log n/:

13.6 Statistical query dimension of intersections of majorities
Recall that the statistical query dimension tightly characterizes the weak learnabil-
ity of a concept class in the statistical query model. In this section, we will explicitly
construct distributions under which intersections of nε majorities, for any constant
0 < ε 6 1=2, have statistical query dimension expf˝.nε/g: This lower bound is es-
sentially tight and is an exponential improvement on the previous construction [37],
which was based on computing parity functions by intersections of halfspaces.

Throughout this section, U stands for the uniform distribution on f0; 1gn:

An important ingredient in our result is the observation that any two distinct reflec-
tions of a bent function are orthogonal with respect to the uniform distribution. This
fact is well-known in coding theory. For completeness, we include a proof.
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LEMMA 13.17 (cf. Macwilliams and Sloane [149, p. 427]). Let f W f0; 1gn !

f�1;C1g be a bent function. Then for any distinct y; y 0 2 f0; 1gn;

E
x�U

Œf .x ˚ y/f .x ˚ y 0/� D 0:

PROOF. By hypothesis, y ˚ y 0 ¤ 0: Thus,

E
x�U

Œf .x ˚ y/f .x ˚ y 0/�

D E

" X
S

Of .S/χS.x/χS.y/

! X
T

Of .T /χT .x/χT .y 0/

!#
D

X
S

X
T

Of .S/ Of .T /χS.y/χT .y 0/ EŒχS.x/χT .x/�

D

X
S

Of .S/2χS.y/χS.y 0/

D 2�n
X

S

χS.y ˚ y 0/

D 0:

The last equality holds because on every ´ 2 f0; 1gn n f0g; exactly half of the
characters evaluate to �1 and the other half, to 1.

The following is a simple consequence of Lemma 13.17.

THEOREM 13.18 (Klivans and Sherstov [127]). Let C denote the concept class of
bent functions on n variables. Then

sqU .C / D 2n:

PROOF. Fix a bent function f and consider its 2n reflections, themselves bent func-
tions. By Lemma 13.17, any two of them are orthogonal.
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Consider a function hW f0; 1gn ! f0; 1gn. The h-induced distribution on
f0; 1gn, denoted by h ıU , is the distribution given by

.h ıU /.´/ D P
x�U

Œh.x/ D ´�

for any ´ 2 f0; 1gn. Put differently, h ı U is the uniform distribution over the
multiset h.f0; 1gn/.

PROPOSITION 13.19 (Klivans and Sherstov [127]). Let f; gW f0; 1gn ! f�1;C1g

and hW f0; 1gn ! f0; 1gn be arbitrary functions. Then

E
x�hıU

Œf .x/g.x/� D E
x�U

Œf .h.x//g.h.x//�:

PROOF. By definition of h ı U , picking a random input according to h ı U is
equivalent to picking x 2 f0; 1gn uniformly at random and outputting h.x/.

We are ready to prove our claimed lower bound on the statistical query di-
mension of MAJn;k:

THEOREM 13.1 (Klivans and Sherstov [127], restated). There are .explicitly given/

distributions µ on f0; 1gn such that

sqµ.MAJn;k/ D

˚
max

˚
n˝.k= log log n/; n˝.log k/

	
if k 6 log n;

n˝.k= log k/ if log n 6 k 6
p

n:

PROOF. Let k 6 log n. Fix an integer m D ˝.log n � log k/ and parity
functions χ1;χ2; : : : ;χn as in Lemma 13.13. Then there is a family F D

ff1; f2; : : : ; f4mg � MAJn;k such that every reflection IPm.x ˚ y/ can be rep-
resented as fi.χ1.x/;χ2.x/; : : : ;χn.x// for some i:
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Define hW f0; 1gn ! f0; 1gn by h.x/ D .χ1.x/;χ2.x/; : : : ;χn.x//: Then
for every two distinct fi ; fj 2 F ; we have

E
x�hıU

Œfi.x/fj .x/� D E
x�U

Œfi.χ1.x/; : : : ;χn.x//fj .χ1.x/; : : : ;χn.x//�

by Proposition 13.19 and therefore further

E
x�hıU

Œfi.x/fj .x/� D 0

by Lemma 13.17. In words, every pair of functions in F are orthogonal under
the distribution h ı U . Therefore, sqhıU .MAJn;k/ > jF j D 4m D n˝.log k/

for k 6 log n: Moreover, the distribution h ı U has an explicit description:
pick a random x 2 f0; 1gn and return the n-bit string .χ1.x/; : : : ;χn.x//; where
χ1; : : : ;χn are the explicitly given parity functions from Lemma 13.13. Apply-
ing an analogous argument to Lemma 13.15 yields the alternate lower bound
sq.MAJn;k/ D minfn˝.k= log k/; n˝.k= log log n/g for k 6

p
n:

Our lower bounds on the statistical query dimension of intersections of ma-
jority functions are essentially tight, as we now observe.

THEOREM 13.20 (Klivans and Sherstov [127]). For every distributionµ on f0; 1gn;

sqµ.MAJn;k/ 6 nO.k�log k�log n/:

PROOF. Klivans et al. [121, Thm. 29] show that every f 2 MAJn;k has threshold
degree d D O.k � log k � log n/: Thus, every f 2 MAJn;k is a halfspace in terms
of the parity functions of degree at most d: It follows that the statistical query
dimension of MAJn;k is at most the statistical query dimension of halfspaces inPd

iD0

�
n

i

�
6 nO.k�log k�log n/ dimensions. It remains to recall Corollary 10.12, which

states that the statistical query dimension of halfspaces on f0; 1gD is 2.D C 1/2 or
less under every distribution.

We conclude this section with an application of our results to sign-rank.
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THEOREM 13.21 (Sherstov). The concept class MAJn;k satisfies

rk˙.MAJn;k/ D

˚
max

˚
n˝.k= log log n/; n˝.log k/

	
if k 6 log n;

n˝.k= log k/ if log n 6 k 6
p

n:

PROOF. Immediate from Theorems 10.13 and 13.1.
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Chapter 14

Lower Bounds for Agnostic Learning

285



This chapter studies the agnostic model, a powerful abstraction of learning
from noisy training data. Both algorithmic results and lower bounds for this model
have seen limited progress. We contribute several new lower bounds, ruling out the
use of the current techniques for learning concept classes as simple as decision lists
and disjunctions. Along the way we relate agnostic learning, via the pattern matrix
method, to our work on communication complexity as well as to an algorithmic
problem known as approximate inclusion-exclusion.

14.1 Introduction
Valiant’s PAC model has been a central model in computational learning theory and
the focus of much algorithmic and complexity-theoretic research. From a practical
standpoint, however, the PAC model is somewhat problematic in that the learning
algorithm requires noise-free, uncorrupted evaluations of the unknown function on
a rather large sample of points. Such training data can be difficult to obtain, for
various reasons such as human error and measurement error. One model of noisy
training data, referred to as random classification noise, was already mentioned
in the previous chapter on statistical query learning. Here, we consider the much
more realistic and challenging agnostic model, reviewed in Section 14.2. The ag-
nostic learner no longer assumes that some function in the concept class C perfectly
matches the training data, hence the term agnostic. The objective, then, is to iden-
tify a function f 2 C that matches the training data almost as well as the best
member of C :

Designing efficient algorithms in the agnostic model is notoriously difficult.
Nevertheless, progress on proving lower bounds has also been scarce. The purpose
of this chapter is to prove several such lower bounds. Kalai et al. [101] discov-
ered what appears to be the only efficient, general-purpose algorithm for agnostic
learning to date. This algorithm efficiently learns concept classes C with low ap-
proximate rank. We study approximate rank in Sections 14.3 and 14.4 and develop
versatile techniques for bounding it from below. Our proofs use the pattern matrix
method as well as Fourier analysis and the basics of perturbation theory for real ma-
trices. In particular, we derive tight, exponential lower bounds on the approximate
rank of disjunctions, decision lists, and majority functions, all well-studied concept
classes in learning theory. It follows that an approach fundamentally different from
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that of Kalai et al. [101] will be needed to solve the agnostic learning problem even
for these concept classes. In Section 14.5, we additionally relate the approximate
rank to the statistical query dimension, linking the two learning models.

Another natural approach to learning in the agnostic model and other mod-
els is to use hypotheses hW f0; 1gn ! f�1;C1g that can be expressed as low-degree
polynomials. In Section 14.6, we prove that this approach fails for various com-
mon concept classes. Building on our analysis, we relate agnostic learning in Sec-
tion 14.7 to the approximate inclusion-exclusion problem. This problem, due to
Linial and Nisan [143], requires one to estimate the probability PŒf .A1; : : : ; An/�

for given events A1; : : : ; An and a given Boolean function f; using only the proba-
bilities of intersections

T
i2S Ai for small sets S: In the concluding section of this

chapter, we determine the ε-approximate degree for every symmetric Boolean func-
tion and every ε 6 1=3; which we use to give a full solution of the approximate
inclusion-exclusion problem for symmetric functions.

14.2 Agnostic learning model
In our discussion of statistical query learning in the previous chapter, we mentioned
a generalization of the PAC model whereby the learner receives training examples
of the form .x.1/; ξ1f .x.1///; : : : ; .x.m/; ξmf .x.m///; where ξ1; : : : ; ξm are inde-
pendent random variables taking on �1 with a small probability ε and taking on
C1 with the complementary probability 1 � ε: For ε D 0; this model is identical
to Valiant’s original PAC model. For 0 < ε < 1=2; the new model is commonly
described as PAC learning with random classification noise. This noise regime is
arguably the most benign from a learning standpoint.

Agnostic learning is a more realistic, adversarial model of noisy learning
proposed by Kearns et al. [107]. Let C be a concept class of functions X !

f�1;C1g for some finite set X: Let λ be a distribution on X � f�1;C1g; unknown
to the learner. The learner receives training examples .x.1/; y.1//; : : : ; .x.m/; y.m//

distributed independently according to λ: Let

opt D max
f 2C

�
P

.x;y/�λ
Œf .x/ D y�

�
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be the performance of the function in C that best agrees with the training data. The
learner in this model is called upon to produce, with probability at least 1 � δ; a
hypothesis hWX ! f�1;C1g with near-optimal agreement with the training data:

P
.x;y/�λ

Œh.x/ D y� > opt � ε;

where ε is an error parameter fixed in advance. If such a learning algorithm can
be found, one says that C is learnable to accuracy ε: We stress that the hypothesis
h need not be a member of C : The term agnostic learning points to the fact that
the learner can no longer assume the existence of a function in the concept class
that matches the data perfectly, as was the case in PAC learning. The objective is
simply to be competitive with the most accurate classifier from C : As usual, the
goal is to have an algorithm that is efficient with respect to both training data and
running time. Ideally, one would want an algorithm with running time and training
data requirements polynomial in log jC j; log jX j; 1=ε; and 1=δ:

Designing efficient algorithms in the agnostic model is difficult. Kalai et
al. [101] discovered what appears to be the only efficient, general-purpose algorithm
for agnostic learning to date. The algorithm works efficiently whenever the concept
class satisfies a natural analytic property, as follows.

THEOREM 14.1 (Kalai et al. [101], implicit). Fix a constant ε > 0 and a con-
cept class C of functions f0; 1gn ! f�1;C1g: Assume that there are functions
φ1; : : : ;φr W f0; 1gn ! R such that for every f 2 C ;

min
φ2spanfφ1;:::;φr g

kf � φk∞ 6
1

3
:

Assume further that each φi.x/ is computable in polynomial time. Then C is ag-
nostically learnable to accuracy ε in time polynomial in r and n:

Let C be a concept class of functions X ! f�1;C1g; for some finite set
X: We define the ε-approximate rank of C ; denoted rkε C ; to be the ε-approximate
rank of the characteristic matrix MC D Œf .x/�f 2C ; x2X : One contribution of this
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chapter is to derive exponential lower bounds on the approximate rank of concept
classes as simple as disjunctions and majority functions, thereby showing that an
approach fundamentally different from Theorem 14.1 is needed to efficiently learn
those concept classes in the agnostic model. Note that we will not use the assump-
tion of polynomial-time computability in Theorem 14.1, which makes our results
stronger.

14.3 Analyzing the approximate rank
In this section, we take a closer look at the ε-approximate rank as a function of ε
and develop some techniques for analyzing it. Let M be a sign matrix. Suppose
that we have an estimate of rkE M for some E with 0 < E < 1: Can we use this
information to obtain a nontrivial upper bound on rkε M; where 0 < ε < E? It
turns out that we can. We first recall that the sign function can be approximated
well by a low-degree polynomial.

FACT 14.2. Let E be given, 0 < E < 1: Then for each integer d > 1; there exists
p 2 Pd such that

jp.t/ � sgn t j 6 8
p

d

�
1 �

.1 �E/2

16

�d

.1 �E 6 jt j 6 1CE/:

Fact 14.2 is implicit in Rudin’s proof [188, Thm. 7.26] of the Weierstrass
approximation theorem. Subtler, improved versions of Fact 14.2 can be readily
found in the approximation literature. As an application to approximate rank, we
have the following result.

THEOREM 14.3 (Klivans and Sherstov [126]). Let M be a sign matrix. Let E; ε be
given with 0 < ε < E < 1: Then

rkε M 6 .rkE M/d ;
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where d is any positive integer with

8
p

d

�
1 �

.1 �E/2

16

�d

6 ε:

PROOF. The key idea of the proof is to improve the quality of the approximat-
ing matrix by applying a suitable polynomial to its entries. Prior to our work, this
technique was used by Alon [12] in the simpler setting of one-sided uniform ap-
proximation.

Specifically, let d be as stated. By Fact 14.2, there exists p 2 Pd with

jp.t/ � sgn t j 6 ε .1 �E 6 jt j 6 1CE/:

Let A be a real matrix with kA �Mk∞ 6 E and rk A D rkE M: Then the matrix
B D Œp.Aij /�i;j obeys kB � Mk∞ 6 ε: Since p is a polynomial of degree d;

elementary linear algebra shows that rk B 6 .rk A/d :

COROLLARY 14.4 (Klivans and Sherstov [126]). Let M be a sign matrix. Let ε; E

be constants with 0 < ε < E < 1: Then

rkε M 6 .rkE M/c;

where c D c.ε; E/ is a constant.

The above corollary shows that the choice of the constant 0 < ε < 1 af-
fects rkε M by at most a polynomial factor. When such factors are unimportant,
we will adopt ε D 1=3 as a canonical setting. We will now develop some tech-
niques for analyzing the approximate rank. An important tool in this chapter is the
well-known Hoffman-Wielandt inequality [85, Thm. 8.6.4], which states that small
perturbations to the entries of a matrix result in small perturbations to its singular
values. This inequality has seen numerous previous uses in the complexity theory
literature [146, 103, 73].
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THEOREM 14.5 (Hoffman-Wielandt inequality). Let A; B 2 Rm�n: Then

minfm;ngX
iD1

.σi.A/ � σi.B//2 6 kA � Bk2
F:

In particular, if rk B D k then

X
i>kC1

σi.A/2 6 kA � Bk2
F:

As an application of the Hoffman-Wielandt inequality, we obtain a lower
bound on the approximate trace norm, which in view of Proposition 2.12 implies a
lower bound on the approximate rank.

LEMMA 14.6 (Klivans and Sherstov [126]). Let M D Œf .x ˚ y/�x;y; where
f W f0; 1gn ! f�1;C1g is a given function and the indices x; y range over f0; 1gn:

Then for all ε > 0;

kMk˙;ε > 2n.k Of k1 � ε2n=2/: (14.1)

In particular,

rkε M >

�
k Of k1 � ε2n=2

1C ε

�2

(14.2)

provided that k Of k1 > ε2n=2:
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PROOF. Let N D 2n be the order of M: Fix a matrix A with kA �Mk∞ 6 ε: By
the Hoffman-Wielandt inequality,

N 2ε2 > kA �Mk2
F >

NX
iD1

.σi.A/ � σi.M//2 >
1

N
.kAk˙ � kMk˙/2;

so that kAk˙ > kMk˙ �N 3=2ε: Since the choice of A was arbitrary, we conclude
that

kMk˙;ε > kMk˙ �N 3=2ε: (14.3)

It is well-known [142, p. 458] that the singular values of M=N are precisely the
absolute values of the Fourier coefficients of f: Indeed,

M D Q

264 N Of .∅/
: : :

N Of .Œn�/

375QT;

where Q D N �1=2ŒχS.x/�x;S is an orthogonal matrix. In particular, kMk˙ D

N k Of k1: Together with (14.3), this completes the proof of (14.1). Finally, (14.2)
follows from (14.1) and Proposition 2.12.

We will now use the pattern matrix method to obtain a different lower bound
on the approximate trace norm and approximate rank.

THEOREM 14.7 (Sherstov [203]). Let F be the .n; t; f /-pattern matrix, where
f W f0; 1gt ! f�1;C1g is given. Let s D 2nCt.n=t/t be the number of entries
in F: Then for every ε 2 Œ0; 1/ and every δ 2 Œ0; ε�;

kF k˙;δ > .ε � δ/
�n

t

�degε.f /=2p
s (14.4)
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and

rkδ F >

�
ε � δ
1C δ

�2 �n

t

�degε.f /

: (14.5)

PROOF. We may assume that degε.f / > 1; since otherwise f is a constant func-
tion and the claims hold trivially by taking Ψ D F in Proposition 2.11. Construct
Ψ as in the proof of Theorem 4.8. Then the lower bound on kF k˙;δ follows from
(4.16), (4.18), and Proposition 2.11. Finally, (14.5) follows from (14.4) and Propo-
sition 2.12.

We prove an additional lower bound in the case of small-bias approximation.

THEOREM 14.8 (Sherstov [203]). Let F be the .n; t; f /-pattern matrix, where
f W f0; 1gt ! f�1;C1g is given. Let s D 2nCt.n=t/t be the number of entries
in F: Then for every γ 2 .0; 1/ and every integer d > 1;

kF k˙;1�γ > γ min
��n

t

�d=2

;

�
W.f; d � 1/

2t

�1=2
�
p

s (14.6)

and

rk1�γ F >

�
γ

2 � γ

�2

min
��n

t

�d

;
W.f; d � 1/

2t

�
: (14.7)

In particular,

kF k˙;1�γ > γ
�n

t

�deg˙.f /=2p
s (14.8)
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and

rk1�γ F >

�
γ

2 � γ

�2 �n

t

�deg˙.f /

: (14.9)

PROOF. Construct Ψ as in the proof of Theorem 4.11. Then the claimed lower
bound on kF k˙;δ follows from (4.26), (4.28), and Proposition 2.11. Now (14.7)
follows from (14.6) and Proposition 2.12. Finally, (14.8) and (14.9) follow by tak-
ing d D deg˙.f / in (14.6) and (14.7), respectively, since W.f; d � 1/ D ∞ in that
case.

Recall that Theorem 4.3 gives an easy way to calculate the trace norm and
rank of a pattern matrix. In particular, it is straightforward to verify that the lower
bounds in (14.5) and (14.7) are close to optimal for various choices of ε;δ; γ :

For example, one has kF � Ak∞ 6 1=3 by taking F and A to be the .n; t; f /-
and .n; t;φ/-pattern matrices, where φW f0; 1gt ! R is any polynomial of degree
deg1=3.f / with kf � φk∞ 6 1=3:

14.4 Approximate rank of specific concept classes
We will now apply the techniques of the previous section to specific concept classes.
The proofs below differ from those in the original publication [126], which chrono-
logically preceded the discovery of the pattern matrix method [203]. Using the
pattern matrix method, we are able to considerably simplify the original proofs. We
start with the concept class of disjunctions.

THEOREM 14.9 (Klivans and Sherstov [126]). Let C be the concept class of
functions f W f0; 1gn ! f�1;C1g of the form f .x/ D

W
i2S xi for some subset

S � f1; 2; : : : ; ng: Then

rk1=3.C / D expf˝.
p

n/g:
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PROOF. The characteristic matrix of C is M D ŒORn.x^y/�x;y; where the indices
x; y range over f0; 1gn: Note that M contains the .2m; m; ORm/-pattern matrix as a
submatrix, where m D bn=4c: The proof is now complete in view of Theorems 2.5
and 14.7 and Corollary 14.4.

The above theorem shows in particular that the algorithm of Kalai et
al. [101], which agnostically learns the concept class of disjunctions in time
expf Q�.

p
n/g; is essentially optimal. We now prove an incomparable result for the

concept class of decision lists.

THEOREM 14.10 (Klivans and Sherstov [126]). Let C denote the concept class of
functions f W f0; 1gn ! f�1;C1g representable as

f .x/ D sgn

 
1C

nX
iD1

.�2/ixiyi

!

for some y 2 f0; 1gn: Then for a sufficiently small absolute constant α > 0;

rk1�exp.�αn1=3/.C / > exp.αn1=3/:

PROOF. The characteristic matrix of C is M D ŒOMBn.x^y/�x;y; where the func-
tion OMBnW f0; 1gn ! f�1;C1g is given by (4.34). Put m D bn=4c: A well-known
result due to Beigel [32] shows that W.OMBm;αm1=3/ > exp.αm1=3/ for some ab-
solute constant α > 0: Since the .2m; m; OMBm/-pattern matrix is a submatrix of
M; the proof is complete in view of Theorem 14.8.

Note that the concept class in Theorem 14.10 is a subclass of decision lists,
a heavily studied family of functions in learning theory. Comparing the results
of Theorems 14.9 and 14.10 for small constant ε; we see that Theorem 14.9 is
stronger in that it gives a better lower bound for a simpler concept class. On the
other hand, Theorem 14.10 is stronger in that it remains valid in the broad range
0 6 ε 6 1 � expf��.n1=3/g; whereas the ε-approximate rank in Theorem 14.9 is
easily seen to be at most n for all ε > 1 � 1

2n
:
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As a final application, we consider the concept class of majority functions.
Here we prove a lower bound of ˝.2n=n/ on the approximate rank, which is the
best of our three constructions and nearly matches the trivial upper bound of 2n:

THEOREM 14.11 (Klivans and Sherstov [126]). Let C denote the concept class of
functions f W f0; 1gn ! f�1;C1g representable as f .x/ D MAJn.x˚ y/ for some
y 2 f0; 1gn: Then

rkα=
p

n.C / > ˝

�
2n

n

�
(14.10)

for a sufficiently small absolute constant α > 0: Also,

rk1=3.C / D expf˝.n/g: (14.11)

PROOF. The characteristic matrix of C is M D ŒMAJn.x ˚ y/�x;y : The Fourier
spectrum of the majority function has been extensively studied by various authors.
In particular, it is well-known [142, �7] that

k1MAJnk1 D ˝

�
2n=2

p
n

�
:

Now (14.10) follows by Lemma 14.6.

Finally, it is straightforward to verify that M contains the .2m; m; MAJm/-
pattern matrix as a submatrix, where m D bn=4c: Hence, (14.11) follows at once
from Theorems 2.5 and 14.7 and Corollary 14.4.

14.5 Approximate rank vs. statistical query dimension
Let M be a sign matrix. Recall that rkε M > rk˙ M for every ε with 0 6 ε < 1:

In other words, the sign rank of a matrix is a lower bound on its approximate rank.
Furthermore, we proved in Theorem 10.13 that rk˙ M >

p
sq.M/=2: Combining
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these two facts, we obtain

rkε M >

r
sq.M/

2
; 0 6 ε < 1:

In this section, we take a closer look at the relationship between the statistical query
dimension and approximate rank. First, we will strengthen the above lower bound
to rkε M > ˝.sq.M// for constant ε: Second, we will construct an explicit matrix
with an exponential gap between its approximate rank and statistical query dimen-
sion. The novelty in the second case is not the exponential separation per se, which
follows from Theorem 10.14, but rather the fact that such a separation is achieved
for an explicit matrix.

A starting point in our analysis is the relationship between the statistical
query dimension of a concept class C and the approximation of C in the `2 norm,
which is also of some independent interest.

THEOREM 14.12 (Klivans and Sherstov [126]). Let C be a concept class of func-
tions X ! f�1;C1g; for some finite set X: Let µ be a distribution over X:

Suppose there exist functions φ1; : : : ;φr WX ! R such that each f 2 C has
Ex�µŒ.f .x/ �

Pr
iD1 αiφi.x//2� 6 ε for some reals α1; : : : ;αr : Then

r > .1 � ε/d �
p

d;

where d D sqµ.C /:

PROOF. By the definition of the statistical query dimension, there exist functions
f1; : : : ; fd 2 C with

ˇ̌̌̌
E
µ

Œfi.x/fj .x/�

ˇ̌̌̌
6

1

d

for all i ¤ j: For simplicity, assume that µ is a distribution with rational weights
(extension to the general case is straightforward). Then there is an integer k > 1
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such that each µ.x/ is an integral multiple of 1=k: Construct the d � k sign matrix

M D Œfi.x/�i;x ;

whose rows are indexed by the functions f1; : : : ; fd and whose columns are indexed
by inputs x 2 X (a given input x indexes exactly kµ.x/ columns). It is easy to
verify that MM T D Œk EµŒfi.x/fj .x/��i;j ; and thus

kMM T
� k � IkF < k: (14.12)

The existence of φ1; : : : ;φr implies the existence of a rank-r real matrix A with
kM � Ak2

F 6 εkd: On the other hand, Theorem 14.5 (the Hoffman-Wielandt in-
equality) guarantees that kM � Ak2

F >
Pd

iDrC1 σi.M/2: Combining these two
inequalities yields:

εkd >
dX

iDrC1

σi.M/2
D

dX
iDrC1

σi.MM T/

> k.d � r/ �

dX
iDrC1

jσi.MM T/ � kj

> k.d � r/ �

 
dX

iDrC1

.σi.MM T/ � k/2

!1=2
p

d � r

> k.d � r/ � kMM T
� k � IkF

p
d � r by Theorem 14.5

> k.d � r/ � k
p

d by (14.12):

We have shown that εd > .d � r/ �
p

d; which is precisely what the theorem
claims. To extend the proof to irrational distributions µ; one considers a rational
distribution Qµ suitably close to µ and repeats the above analysis.

We are now in a position to relate the statistical query dimension to the
approximate rank and exhibit an exponential gap between the two quantities.
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THEOREM 14.13 (Klivans and Sherstov [126]). Let C be a concept class of func-
tions X ! f�1;C1g for some finite set X: Then for 0 6 ε < 1;

rkε.C / > .1 � ε2/ sq.C / �
p

sq.C /: (14.13)

Moreover, there exists an .explicitly given/ concept class A with

sq.A / 6 O.n2/;

rk1=3.A / > exp f˝.n/g:

PROOF. Let r D rkε.C /: Then there are functions φ1; : : : ;φr such that every
function f 2 C has kf �

Pr
iD1 αiφik∞ 6 ε for some reals α1; : : : ;αr : As a result,

E
x�µ

24 f .x/ �

rX
iD1

αiφi.x/

!2
35 6 ε2

for every distribution µ: By Theorem 14.12,

r > .1 � ε2/ sqµ.C / �
q

sqµ.C /:

Maximizing over µ establishes (14.13).

To prove the second part, let MAJnW f0; 1gn ! f�1;C1g be the majority
function and let A be the family of all its reflections MAJn.x ˚ y/; y 2 f0; 1gn:

Theorem 14.11 shows that A has the stated approximate rank. To bound its statis-
tical query dimension, note that each function in A can be pointwise approximated
within error 1 � 1=n by a linear combination of the functions .�1/x1; : : : ; .�1/xn :

Therefore, (14.13) implies that sq.A / 6 O.n2/:
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14.6 Learning via low-degree polynomials
A natural approach to learning in the agnostic model and other models is to consider
only those hypotheses that depend on few variables. One tests each such hypothesis
against the training data and outputs the one with the least error. This technique is
attractive in that the hypothesis space is small and well-structured, making it pos-
sible to efficiently identify the best approximation to the observed examples. The
question then becomes, what advantage over random guessing can such hypotheses
guarantee? In this section we prove that, even when learning the simplest concept
classes, one is forced to use hypotheses that depend on many variables, all others
having zero advantage over random guessing. The following definition formalizes
the subject of our study.

DEFINITION 14.14 (Sherstov [199]). Let f W f0; 1gn ! f�1;C1g be a given func-
tion. Define

Γ .f; k/ D max
λ

�
P

.x;y/�λ
Œf .x/ D y�

�
;

where the maximum is taken over all distributions λ on f0; 1gn � f�1;C1g such
that

P
.x;y/�λ

Œg.x/ D y� D
1

2

for every function gW f0; 1gn ! f�1;C1g that depends on k or fewer variables.

Observe that the maximization in Definition 14.14 is over a nonempty com-
pact set that contains the uniform distribution. We will see, among other things, that
Γ .ORn; �.

p
n// > 0:99: In other words, even though the training examples have

99% agreement with the target function ORn; no hypothesis that depends on few
variables can match the data better than random. An analogous statement holds for
any Boolean function with high approximate degree.
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LEMMA 14.15 (Sherstov [199]). Let λ be a distribution on f0; 1gn � f�1;C1g:

Then for every function f W f0; 1gn ! f�1;C1g;

P
.x;y/�λ

Œf .x/ D y� D
1

2
C

1

2

X
x2f0;1gn

fλ.x; 1/ � λ.x;�1/gf .x/:

PROOF. We have

P
.x;y/�λ

Œf .x/ D y� D P
.x;y/�λ

Œf .x/ D y D �1�C P
.x;y/�λ

Œf .x/ D y D C1�

D

X
x2f0;1gn

1 � f .x/

2
� λ.x;�1/C

X
x2f0;1gn

1C f .x/

2
� λ.x; 1/

D
1

2
C

1

2

X
x2f0;1gn

fλ.x; 1/ � λ.x;�1/gf .x/:

Recall from Section 2.2 that the symbol E.f; k/ stands for the least error in
a uniform approximation of the function f by a polynomial of degree at most k:

We will now show that Γ .f; k/ and E.f; k/ are closely related quantities.

THEOREM 14.16 (Sherstov [199]). Let f W f0; 1gn ! f�1;C1g be a given function.
Then

Γ .f; k/ D
E.f; k/C 1

2
:

PROOF. By Lemma 14.15,

Γ .f; k/ D
1

2
C

1

2
max
λ

( X
x2f0;1gn

.λ.x; 1/ � λ.x; 0//f .x/

)
;
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where the maximum is over all distributions λ on f0; 1gn � f�1;C1g such that

X
x2f0;1gn

.λ.x; 1/ � λ.x;�1//g.x/ D 0

for every function gW f0; 1gn ! f�1;C1g that depends on k or fewer variables.
As λ ranges over all distributions, the function λ.x; 1/ � λ.x;�1/ ranges over all
functions ψW f0; 1gn ! R with kψk1 6 1: Equivalently,

Γ .f; k/ D
1

2
C

1

2
max
ψ

( X
x2f0;1gn

ψ.x/f .x/

)
;

where the maximum is over all ψW f0; 1gn ! R such that kψk1 6 1 and Oψ.S/ D 0

for jS j 6 k: By Theorem 4.4, the proof is complete.

Rephrasing the previous theorem yields the main result of this section.

THEOREM 14.17 (Sherstov [199]). Let f W f0; 1gn ! f�1;C1g be a given function.
Then for each k > 0; there is a distribution λ on f0; 1gn � f�1;C1g such that

P
.x;y/�λ

Œf .x/ D y� >
1CE.f; k/

2

and

P
.x;y/�λ

Œg.x/ D y� D
1

2

for every gW f0; 1gn ! f�1;C1g that depends on at most k variables.

PROOF. Immediate from Definition 14.14 and Theorem 14.16.
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In particular, Theorem 14.17 settles the promised statement about Boolean
functions with high approximate degree. To place this result in the framework of
agnostic learning, consider any concept class C that contains many functions with
high approximate degree. For example, one could fix a nonconstant symmetric
function f W f0; 1gn ! f�1;C1g and consider the concept class C of

�
2n

n

�
func-

tions, each being a copy of f applied to a separate set of n variables from among
x1; x2; : : : ; x2n:

C D
n
f .xi1

; xi2
; : : : ; xin

/ W 1 6 i1 < i2 < � � � < in 6 2n
o
:

Theorem 14.17 now supplies scenarios when some member of C matches the train-
ing data almost perfectly, and yet every hypothesis that depends on few variables is
completely useless. This result generalizes earlier work by Tarui and Tsukiji [211],
who obtained a special case of Theorem 14.17 for the OR function.

14.7 Relationship to approximate inclusion-exclusion
Let A1; A2; : : : ; An be events in a probability space. The well-known inclusion-
exclusion principle allows one to compute the probability of A1 [ � � � [ An using
the probabilities of various intersections of A1; A2; : : : ; An:

PŒA1 [ � � � [ An� D
X

i

PŒAi � �
X
i<j

PŒAi \ Aj �C
X

i<j <k

PŒAi \ Aj \ Ak� � � � �

C.�1/nC1 PŒA1 \ � � � \ An�:

A moment’s reflection shows that knowledge of every term in this summation is
necessary in general for an exact answer [143]. It is therefore natural to wonder
if one can closely approximate PŒ

S
Ai � using the probabilities of intersections of

up to k events, where k � n: This problem, due to Linial and Nisan [143], is
known as approximate inclusion-exclusion. Linial and Nisan studied this question
and gave near-tight bounds on the least approximation error as a function of k: A
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follow-up article by Kahn, Linial, and Samorodnitsky [100] improved those bounds
to optimal.

While A1 [ � � � [ An is an important event, it is not the only one of inter-
est. For example, we might be interested in the probability that most of the events
A1; : : : ; An occur, or the probability that an odd number of the events from among
A1; : : : ; An occur. More generally, let f W f0; 1gn ! f�1;C1g be a given Boolean
function. The problem of interest to us in this section is that of estimating

PŒf .A1; : : : ; An/ D �1�

given the probabilities PŒ
T

i2S Ai � for jS j 6 k: In what follows, we will adopt the
shorthand PŒf .A1; : : : ; An/� D PŒf .A1; : : : ; An/ D �1�:

Our approach departs from the previous methods [143, 100], which are spe-
cialized to the case f D ORn: First, we will show that the inclusion-exclusion
problem for a given function f is exactly equivalent to a classical approximation
problem. Specifically, define

�.f; k/ D
1

2
sup

�
P
P1

Œf .A1; : : : ; An/� � P
P2

Œf .B1; : : : ; Bn/�

�
;

where the supremum is over all probability spaces P1 and P2; over all events
A1; : : : ; An in P1; and over all events B1; : : : ; Bn in P2; such that

P
P1

"\
i2S

Ai

#
D P

P2

"\
i2S

Bi

#
; jS j 6 k: (14.14)

In words, the quantity �.f; k/ is the optimal error achievable in approximating
PŒf .A1; : : : ; An/�: We will show:
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THEOREM 14.18 (Sherstov [199]). Let f W f0; 1gn ! f�1;C1g be a given function.
Then for all k;

�.f; k/ D
E.f; k/

2
:

Theorem 14.18 states that the approximate inclusion-exclusion problem for
a given function f is equivalent to the problem of approximating f by a multivari-
ate polynomial of degree up to k: Note the similarity of this result to our earlier
Theorem 14.16 on agnostic learning. This similarity is no accident; the two results
are proved via the same duality transformation, revealing a relationship between
agnostic learning and a seemingly disjoint algorithmic question. In the next sec-
tion, we will solve the approximation problem for all symmetric functions and all
k; thereby solving the corresponding inclusion-exclusion problem.

In the remainder of this section, we focus on proving Theorem 14.18. First,
we will first show that the arbitrary probability spaces in the definition of �.f; k/

can be restricted to probability distributions on f0; 1gn:

DEFINITION 14.19 (Sherstov [199]). Let E1; : : : ; En be events in a probability
space P: The distribution on f0; 1gn induced by P; E1; : : : ; En is defined as

µ.x/ D P

24 \
i Wxi D0

Ei

\
i Wxi D1

Ei

35 :

PROPOSITION 14.20 (Sherstov [199]). Let E1; : : : ; En be events in a probability
space P: Let µ be the distribution on f0; 1gn induced by P; E1; : : : ; En: Then for
every gW f0; 1gn ! f�1;C1g;

PŒg.E1; : : : ; En/� D
1

2
�

1

2
E

x�µ
Œg.x/�:
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PROOF. We have:

PŒg.E1; : : : ; En/� D
X

x2f0;1gn

1 � g.x/

2
P

24 \
i Wxi D0

Ei

\
i Wxi D1

Ei

35
D

X
x2f0;1gn

1 � g.x/

2
µ.x/

D
1

2
�

1

2
E

x�µ
Œg.x/�:

For a set S � Œn�; define ANDS W f0; 1gn ! f�1;C1g by ANDS.x/ DV
i2S xi : In particular, AND∅ � �1:

LEMMA 14.21 (Sherstov [199]). Let f W f0; 1gn ! f�1;C1g be a given function.
Then

�.f; k/ D
1

4
max
α;β

�
E

x�α
Œf .x/� � E

x�β
Œf .x/�

�
; (14.15)

where the maximum is taken over all probability distributions α;β on f0; 1gn such
that Ex�αŒANDS.x/� D Ex�βŒANDS.x/� for jS j 6 k:

PROOF. Fix probability spaces P1; P2; events A1; : : : ; An in P1; and events
B1; : : : ; Bn in P2; such that (14.14) holds. Let α and β be the distributions on
f0; 1gn induced by P1; A1; : : : ; An and P2; B1; : : : ; Bn; respectively. Then by
Proposition 14.20,

1

2
E

x�α
Œf .x/� �

1

2
E

x�β
Œf .x/� D P

P1

Œf .A1; : : : ; An/� � P
P2

Œf .B1; : : : ; Bn/�
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and

E
x�α

ŒANDS.x/� D E
x�β

ŒANDS.x/�; jS j 6 k:

Letting δ stand for the right-hand side of (14.15), we conclude that �.f; k/ 6 δ:

It remains to show that �.f; k/ > δ: Given a probability distribution µ
on f0; 1gn; there is an obvious discrete probability space P and events E1; : : : ; En

in it that induce µ: simply let P D f0; 1gn with Ei defined to be the event that
xi D 1; where x 2 f0; 1gn is distributed according to µ: This allows us to reverse
the argument of the previous paragraph (again using Proposition 14.20) and show
that �.f; k/ > δ:

With �.f; k/ thus simplified, we are in a position to prove the main result
of this section. It is instructive to compare the proof to follow with the proof of
Theorem 14.16.

PROOF OF THEOREM 14.18. As α and β in the statement of Lemma 14.21 range
over all distributions on f0; 1gn; the function fα.x/�β.x/g=2 ranges over all func-
tions ψW f0; 1gn ! R with kψk1 6 1 and Oψ.∅/ D 0: As a result, we can restate
Lemma 14.21 as follows:

�.f; k/ D
1

2
max
ψ

( X
x2f0;1gn

f .x/ψ.x/

)
;

where the maximum is taken over all functions ψW f0; 1gn ! R with kψk1 6 1 and
Oψ.S/ D 0 for jS j 6 k: By Theorem 4.4, the proof is complete.

14.8 High-accuracy approximation of symmetric functions
The purpose of this section is to determine the ε-approximate degree for every sym-
metric function and every ε 6 1=3: This result is of independent interest, given the
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role of uniform approximation in this thesis. Our primary application of this result
will be to complete the solution of the approximate inclusion-exclusion problem,
started in the previous section. Our main theorem on approximation is as follows.

THEOREM 14.22 (Sherstov [199]). Let f W f0; 1gn ! f�1;C1g be a given function
with f .x/ � D.

P
xi/ for some predicate DW f0; 1; : : : ; ng ! f�1;C1g: Let ε 2

Œ2�n; 1=3� be given. Then

degε.f / D Q�
�p

n.`0.D/C `1.D// C
p

n log.1=ε/
�

;

where `0.D/ 2 f0; 1; : : : ; bn=2cg and `1.D/ 2 f0; 1; : : : ; dn=2eg are the smallest
integers such that D is constant in the range Œ`0.D/; n� `1.D/�: Furthermore, the
approximating polynomial for each D and ε is given explicitly.

The Q� notation in the above statement suppresses logarithmic factors. In
words, Theorem 14.22 rather fully characterizes the uniform approximation of sym-
metric Boolean functions. It is a broad generalization of several earlier results in
the literature. The first of these is Paturi’s Theorem 2.5, which states that

deg1=3.f / D �
�p

n.`0.D/C `1.D//
�

in the notation of Theorem 14.22. Unfortunately, Paturi’s result and its proof give
no insight into the behavior of the ε-approximate degree for vanishing ε: Another
relevant result is due to Kahn et al. [100], who conducted an in-depth study of the
case f D ORn: They showed that

degε.ORn/ D Q�.
p

n log.1=ε//; 2�n 6 ε 6
1

3
:

Using different techniques, Buhrman et al. [52] gave the final answer for f D ORn:

degε.ORn/ D �.
p

n log.1=ε//; 2�n 6 ε 6
1

3
:
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Thus, our work generalizes the above results to every symmetric function
and every ε 2 Œ2�n; 1=3�: Theorem 14.22 has another, more revealing interpretation.
In view of Paturi’s work, it can be restated as

degε.f / D Q�.deg1=3.f /C
p

n log.1=ε//; 2�n 6 ε 6
1

3
; (14.16)

where f is any nonconstant symmetric function. In words, past a certain threshold,
the dependence of the ε-approximate degree on ε is essentially the same for all non-
constant symmetric functions. This threshold varies from one function to another
and equals the degree required for approximation within 1=3:

In the remainder of this section, we prove Theorem 14.22. We will es-
tablish the upper and lower bounds in this result separately, as Lemma 14.26 and
Lemma 14.29 below. To simplify notation, we will speak of the approximate degree
degε.D/ of a predicate DW f0; 1; : : : ; ng ! f�1;C1g rather than the approximate
degree of its corresponding symmetric function. Here degε.D/ is of course defined
as the least degree of a univariate polynomial p such that jD.i/ � p.i/j 6 ε for
i D 0; 1; : : : ; n: In view of Proposition 2.2, the ε-approximate degree of a predicate
D is equal to the ε-approximate degree of its corresponding symmetric Boolean
function f .x/ D D.

P
xi/: This justifies our switch from the latter to the former.

Our proofs make heavy use of Chebyshev polynomials, which is not sur-
prising given their fundamental role in approximation. The other key ingredient is
interpolation, which here amounts to multiplying an imperfect approximant p.t/ by
another polynomial q.t/ that zeroes out p’s mistakes. This interpolation technique
is well-known [21, 100] and is vital to exploiting the discrete character of the prob-
lem: we are interested in approximation over the discrete set of points f0; 1; : : : ; ng

rather than the stronger continuous setting, Œ0; n�: Kahn et al. [100], who obtained
the special case of Theorem 14.22 for f D ORn; also used Chebyshev polynomials
and interpolation, although in a simpler and different way.

We start by recalling a few properties of Chebyshev polynomials, whose
proofs can be found in any standard textbook on approximation theory, e.g.,
Rivlin [185] and Cheney [60].
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FACT 14.23 (Chebyshev polynomials). The d th Chebyshev polynomial, Td .t/; has
degree d and satisfies the following properties:

Td .1/ D 1 (14.17)

jTd .t/j 6 1 .�1 6 t 6 1/ (14.18)

T 0
d .t/ > d 2 .t > 1/ (14.19)

Td .1C δ/ > 1
2
� 2d

p
2δ .0 6 δ 6 1=2/ (14.20)

2 6 Tdae

�
1C 1

a2

�
6 7 .a > 1/ (14.21)

At the heart of our construction is the following technical lemma, which
gives an efficient method for approximating a given predicate D everywhere except
in the vicinity of points where D changes value.

LEMMA 14.24 (Sherstov [199]). Let ` > 0; � > 1; and d > 1 be integers with
`C� 6 n=2: Then there is an .explicitly given/ polynomial p.t/ of degree at most
22.d C 1/

p
n.`C�/=� with

p.n � `/ D 1

and

jp.t/j 6 2�d ; t 2 Œ0; n� n .n � ` ��; n � `C�/:

PROOF. Define

p1.t/ D Tlqn�`��
`C�

m � t

n � ` ��

�
:
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One readily verifies the following properties of p1:

p1.Œ0; n � ` ���/ � Œ�1; 1� by (14.18);

p1.Œn � ` ��; n�/ � Œ1; 7� by (14.17), (14.19), (14.21);

p0
1.t/ >

1

`C�
for t > n � ` �� by (14.19);

p1.n � `/ � p1.n � ` ��/ >
�

`C�
by previous line;

p1.n � `C�/ � p1.n � `/ >
�

`C�
likewise.

…

(14.22)

Now consider the polynomial defined by

p2.t/ D

�
p1.t/ � p1.n � `/

8

�2

:

In view of (14.22), this new polynomial satisfies

p2.n � `/ D 0

and

p2.t/ 2

�
�2

64.`C�/2
; 1

�
; t 2 Œ0; n� n .n � ` ��; n � `C�/:

Finally, define

p3.t/ D Tl 8.dC1/.`C�/p
2�

m �1C
�2

64.`C�/2
� p2.t/

�
:
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Using (14.20) and the properties of p2; one sees that p.t/ D p3.t/=p3.n�`/ is the
desired polynomial.

There are a large number of distinct predicates on f0; 1; : : : ; ng: To simplify
the analysis, we would like to work with a small family of functions that have simple
structure yet allow us to efficiently express any other predicate. A natural choice is
the family EXACT`W f0; 1; : : : ; ng ! f0; 1g for ` D 0; 1; : : : ; n; where

EXACT`.t/ D
�

1 if t D `;
0 otherwise.

For a moment, we shall focus on an explicit construction for EXACT`:

LEMMA 14.25 (Sherstov [199]). Let 0 6 ` 6 n=2: Then for ε 6 1=3;

degε.EXACT`/ D degε.EXACTn�`/

D O
�p

n.`C 1/ log nC
p

n log.1=ε/ log n
�

:

PROOF. The first equality in the statement of the lemma is obvious, and we concen-
trate on the second. We may assume that ` 6 n= log2 n and log.1=ε/ 6 n= log n;

since otherwise the claim is trivial. Set

� D

�
log.1=ε/

log n

�
; d D 3� dlog ne:

Our assumptions about ` and ε imply that `C � � n=2; and thus Lemma 14.24
is applicable. Denote by p.t/ the polynomial constructed in Lemma 14.24. Define

q.t/ D
Y

iD�.��1/;:::;.��1/
i¤0

.t � .n � `C i//:
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We claim that the polynomial given by

r.t/ D
1

q.n � `/
� p.t/q.t/

is the sought approximation to EXACTn�`: Indeed, it is easy to verify that r.t/ has
the desired degree. For t 2 f0; 1; : : : ; ng n fn� `� .�� 1/; : : : ; n� `C .�� 1/g,

jr.t/ � EXACTn�`.t/j D jr.t/j 6 n2.��1/
�

1

2d
6 ε:

Since r.t/ D EXACTn�`.t/ for all remaining t; the proof is complete.

We are now in a position to prove the sought upper bound on the approxi-
mate degree of any predicate.

LEMMA 14.26 (Sherstov [199]). Let DW f0; 1; : : : ; ng ! f�1;C1g be a given pred-
icate. Then for ε 6 1=3;

degε.D/ 6 O
�p

n.`0.D/C `1.D// log nC
p

n log.1=ε/ log n
�

:

Moreover, the approximating polynomial is given explicitly.

PROOF. Without loss of generality, we can assume that D.dn=2e/ D 1 (otherwise,
work with the negation of D). For ` D 0; 1; : : : ; n; let p`.t/ denote the polyno-
mial that approximates EXACT`.t/ pointwise to within ε=.2n/; as constructed in
Lemma 14.25. Put

p.t/ D 1 � 2
X

` W D.`/D�1

p`.t/:
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Then clearly p.t/ approximates D pointwise to within ε: It remains to place an
upper bound on the degree of p:

degε.D/ 6 deg p

6 max
` W D.`/D�1;
`<dn=2e

fdeg p`g C max
` W D.`/D�1;
`>dn=2e

fdeg pn�`g

6 O
��p

n`0.D/C
p

n`1.D/
�

log nC
p

n log.n=ε/ log n
�

6 O
�p

n.`0.D/C `1.D// log nC
p

n log.1=ε/ log n
�

;

where the third inequality follows by Lemma 14.25.

We now turn to the matching lower bounds on the approximate degree of
predicates, which are substantially easier to obtain. Our proof uses a reduction to
the function EXACT0; for which Kahn et al. [100] have already obtained a near-
tight lower bound.

THEOREM 14.27 (Kahn et al. [100]). For every polynomial p of degree k < n;

max
iD0;1;:::;n

jEXACT0.i/ � p.i/j > n��.k2=n/:

COROLLARY 14.28. Let ε be given with 2��.n log n/ 6 ε 6 1=3: Then

degε.EXACT0/ > ˝

 s
n log.1=ε/

log n

!
:

We are now in a position to prove the desired lower bound on the approxi-
mate degree of any given predicate.
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LEMMA 14.29 (Sherstov [199]). Let DW f0; 1; : : : ; ng ! f�1;C1g be a noncon-
stant predicate. Then for each ε with 2��.n log n/ 6 ε 6 1=3;

degε.D/ > ˝

 p
n.`0.D/C `1.D//C

s
n log.1=ε/

log n

!
:

PROOF. In view of Theorem 2.5, it suffices to show that

degε.D/ > ˝

 s
n log.1=ε/

log n

!
: (14.23)

Abbreviate ` D `0.D/ and assume without loss of generality that ` > 1 (oth-
erwise work with ` D `1.D/). We can additionally assume that ` 6 n=5 since
otherwise the claim follows trivially from Theorem 2.5. Consider the function
EXACT0W f0; 1; : : : ; bn=5cg ! f0; 1g: By Corollary 14.28,

degε.EXACT0/ > ˝

 s
n log.1=ε/

log n

!
(14.24)

On the other hand,

EXACT0.t/ D
1

2
�

1

2
D.`/D.t C ` � 1/;

so that

degε.EXACT0/ 6 degε.D/: (14.25)

Equations (14.24) and (14.25) imply (14.23), thereby completing the proof.
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At this point, we have proved the lower and upper bounds in Theorem 14.22.
We will now combine this theorem with our work in the previous section to solve
the inclusion-exclusion problem for all symmetric functions.

THEOREM 14.30 (Sherstov [199]). Let f W f0; 1gn ! f�1;C1g be a nonconstant
function with f .x/ � D.

P
xi/ for some predicate DW f0; 1; : : : ; ng ! f�1;C1g:

Let ` D `0.D/C`1.D/; where `0.D/ and `1.D/ are as defined in Theorem 14.22.
Then

�.f; k/ D �.1/ if k 6 �.
p

n`/;

�.f; k/ 2

"
2

��

�
k2 log n

n

�
; 2

��
�

k2

n log n

�#
if �.

p

n` log n/ 6 k 6 �.n/:

Furthermore, for every k > �.
p

n` log n/; there are reals a0; a1; : : : ; ak; com-
putable in time polynomial in n; such that

ˇ̌̌̌
ˇ̌ PŒf .A1; : : : ; An/� �

kX
j D0

aj

X
S WjS jDj

P

"\
i2S

Ai

# ˇ̌̌̌
ˇ̌ 6 2

��
�

k2

n log n

�

for any events A1; : : : ; An in any probability space P:

PROOF. By Proposition 2.2, Theorem 2.5, and Lemmas 14.26 and 14.29,

E.f; k/ 2

„
�.1/ if k 6 �.

p
n`/;"

2
��

�
k2 log n

n

�
; 2

��
�

k2

n log n

�#
if �.

p
n` log n/ 6 k 6 �.n/:

In view of Theorem 14.18, this proves the claim regarding �.f; k/: We now turn to
the claim regarding a0; a1; : : : ; ak: For k > �.

p
n` log n/; Lemma 14.26 gives an
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explicit univariate polynomial p 2 Pk such that

jf .x/ � p.x1 C � � � C xn/j 6 2
��

�
k2

n log n

�
; x 2 f0; 1gn: (14.26)

Fix a probability space P and events A1; : : : ; An in it. Let µ be the distribution on
f0; 1gn induced by P; A1; : : : ; An: We claim that the quantity

1

2
�

1

2
E

x�µ
Œp.x1 C � � � C xn/�

is the desired approximant of PŒf .A1; : : : ; An/�: Indeed,

1

2
�

1

2
E

x�µ
Œp.x1 C � � � C xn/� D E

x�µ

24 kX
j D0

aj

X
jS jDj

Y
i2S

xi

35
D

kX
j D0

aj

X
jS jDj

E
x�µ

"Y
i2S

xi

#

D

kX
j D0

aj

X
jS jDj

P

"\
i2S

Ai

#
;

where the reals a0; a1; : : : ; ak are uniquely determined by the polynomial p; itself
explicitly given. It is also clear that a0; a1; : : : ; ak can be computed from the coeffi-
cients of p in time polynomial in n: Therefore, the quantity Ex�µŒp.

P
xi/� has the

desired representation. It remains to verify that it approximates PŒf .A1; : : : ; An/�

as claimed:

ˇ̌̌̌
PŒf .A1; : : : ; An/� �

1

2
C

1

2
E

x�µ
Œp.x1 C � � � C xn/�

ˇ̌̌̌
D

ˇ̌̌̌
1

2
E

x�µ
Œf .x/ � p.x1 C � � � C xn/�

ˇ̌̌̌
6 2

��
�

k2

n log n

�
;
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where the equality holds by Proposition 14.20 and the inequality by (14.26).

REMARK 14.31. Equation (14.16) in this section determines the ε-approximate de-
gree of every symmetric function to within logarithmic factors. In a recent follow-
up result, de Wolf [221] improved our bounds to a tight answer:

degε.f / D �
�

deg1=3.f /C
p

n log.1=ε/
�

for every nonconstant symmetric f and every ε 2 Œ2�n; 1=3�: By Theorem 14.18,
this automatically leads to sharper bounds for the inclusion-exclusion problem. De
Wolf’s argument, short and elegant, is based on quantum query complexity.
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Chapter 15

Lower Bounds for Sign-Representation
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In this chapter, we will take an in-depth look at the sign-representation of
Boolean functions by real polynomials. We will prove that, for any Boolean func-
tions f and g; the intersection f .x/^g.y/ has threshold degree O.d/ if and only if
there exist rational functions F; G of degree O.d/ with kf �F k∞Ckg�Gk∞ < 1:

This characterization extends to conjunctions of three and more functions as well
as various other compositions. This result is of interest because of the applications
of the threshold degree in previous chapters of this thesis and in earlier literature.
As a concrete application in the next chapter, we will solve an open problem in
learning theory, due to Klivans [120], on the threshold degree of the intersection of
two halfspaces.

15.1 Introduction
Recall that the threshold degree of a function f WX ! f�1;C1g; for some finite set
X � Rn; is the least degree of a real polynomial with f .x/ � sgn p.x/: In words,
the threshold degree deg˙.f / is the least degree of a real polynomial that represents
f in sign. The formal study of this complexity measure and of sign-representations
in general began in 1969 with the seminal monograph of Minsky and Papert [153],
where the threshold degree was analyzed for several common functions. Since
then, the notion of threshold degree has found a variety of applications. Paturi and
Saks [166] and later Siu et al. [210] used Boolean functions with high threshold
degree to obtain size-depth trade-offs for threshold circuits. The well-known result,
due to Beigel et al. [33], that PP is closed under intersection is also naturally inter-
preted in terms of threshold degree. In another development, Aspnes et al. [21] used
the notion of threshold degree and its relaxations to obtain oracle separations for PP
and to give an insightful new proof of classical lower bounds for AC0

: Krause and
Pudlák [132, 133] used random restrictions to show that the threshold degree gives
lower bounds on the weight and density of perceptrons and their generalizations,
which are well-studied computational models. A variety of other applications of
the threshold degree are discovered in this thesis, including discrepancy bounds
(Chapter 4), unbounded-error communication complexity (Chapters 7 and 8), and
approximate rank (Chapter 14).

Apart from complexity theory, the threshold degree of Boolean functions is
of interest in computational learning. In this context, low threshold degree trans-
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lates into efficient learnability [122, 121]. Specifically, functions with low threshold
degree can be efficiently PAC-learned under arbitrary distributions via linear pro-
gramming. An illustrative example is the current fastest algorithm for PAC-learning
polynomial-size DNF formulas, due to Klivans and Servedio [122], which is based
precisely on an upper bound on the threshold degree of this concept class. Klivans
et al. [121] showed that intersections of light halfspaces also have low threshold
degree, thereby giving an efficient PAC algorithm for this class as well.

Despite the role of sign-representations in learning theory and complex-
ity theory, progress in understanding the threshold degree has been slow and dif-
ficult [153, 21, 163, 164]. The main contribution of this chapter is a strong new
technique for estimating the threshold degree. To set the stage for our results, con-
sider the special but illustrative case of the conjunction of two functions. In other
words, we are given functions f WX ! f�1;C1g and gWY ! f�1;C1g for some
finite sets X; Y � Rn and would like to determine the threshold degree of their
conjunction, .f ^ g/.x; y/ D f .x/ ^ g.y/: A simple and elegant method for
sign-representing f ^ g; due to Beigel et al. [33], is to use rational approximation.
Specifically, let p1.x/=q1.x/ and p2.y/=q2.y/ be rational functions of degree d

that approximate f and g; respectively, in the following sense:

max
x2X

ˇ̌̌̌
f .x/ �

p1.x/

q1.x/

ˇ̌̌̌
C max

y2Y

ˇ̌̌̌
g.y/ �

p2.y/

q2.y/

ˇ̌̌̌
< 1: (15.1)

Then

f .x/ ^ g.y/ � sgnf1C f .x/C g.y/g � sgn
�

1C
p1.x/

q1.x/
C

p2.y/

q2.y/

�
: (15.2)

Multiplying the last expression in braces by the positive quantity q1.x/2q2.y/2

gives

f .x/ ^ g.y/ � sgn
˚
q1.x/2q2.y/2

Cp1.x/q1.x/q2.y/2
C p2.y/q1.x/2q2.y/

	
;
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whence deg˙.f ^ g/ 6 4d: In summary, if f and g can be approximated as in
(15.1) by rational functions of degree at most d; then the conjunction f ^ g has
threshold degree at most 4d:

A natural question to ask is whether there exists a better construction. After
all, given a sign-representing polynomial p.x; y/ for f .x/ ^ g.y/; there is no rea-
son to expect that p arises from the sum of two independent rational functions as
in (15.2). Indeed, x and y can be tightly coupled inside p.x; y/ and can interact in
complicated ways. In Section 15.4 we prove that, surprisingly, no such interactions
can beat the simple construction above. In other words, the sign-representation
based on rational functions always achieves the optimal degree, up to a small con-
stant factor:

THEOREM 15.1 (Sherstov [200]). Let f WX ! f�1;C1g and gWY ! f�1;C1g

be given functions, where X; Y � Rn are arbitrary finite sets. Assume that f and g

are not identically false. Let d D deg˙.f ^g/: Then there exist degree-4d rational
functions

p1.x/

q1.x/
;

p2.y/

q2.y/

that satisfy (15.1).

Via repeated applications of this theorem, we obtain in Section 15.5 anal-
ogous results for conjunctions f1 ^ f2 ^ � � � ^ fk of any Boolean functions
f1; f2; : : : ; fk and any k: We then further extend our results to compositions
F.f1; : : : ; fk/ for various F other than F D ANDk; such as halfspaces and read-
once AND/OR/NOT formulas.

Previously, it was a substantial challenge to analyze the threshold degree
even for compositions of the form f ^ g: Indeed, we are only aware of the work
in [153, 163], where the threshold degree of f ^ g was studied for the special case
f D g D MAJn: The main difficulty in those previous works was analyzing the
unintuitive interactions between f and g: Our results remove this difficulty, even in
the general setting of compositions F.f1; f2; : : : ; fk/ for arbitrary f1; f2; : : : ; fk

and various combining functions F: In other words, one can study the base func-
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tions f1; f2; : : : ; fk individually, in isolation; once their rational approximability
is understood, one immediately obtains lower bounds on the threshold degree of
F.f1; f2; : : : ; fk/: As an application of Theorem 15.1 in the next chapter, we will
construct two halfspaces on f0; 1gn with threshold degree ˝.

p
n/; improving ex-

ponentially on previous work and solving an open problem due to Klivans [120].

15.2 Background and definitions
Throughout this chapter, the symbol t refers to a real variable, whereas u; v; w; x;

y; ´ refer to vectors in Rn and in particular in f0; 1gn: For a subset X � Rn; we
adopt the notation �X D f�x W x 2 Xg: We say that a set X � Rn is closed under
negation if X D �X: Given a function f WX ! R; where X � Rn; we say that f

is odd (respectively, even) if X is closed under negation and f .�x/ D �f .x/ for
all x 2 X (respectively, f .�x/ D f .x/ for all x 2 X ).

Given functions f WX ! f�1;C1g and gWY ! f�1;C1g; recall that the
function f ^gWX �Y ! f�1;C1g is given by .f ^g/.x; y/ D f .x/^g.y/: The
function f _ g is defined analogously. Observe that in this notation, f ^ f and f

are completely different functions, the former having domain X � X and the latter
X: These conventions extend in the obvious way to any number of functions. For
example, f1^f2^ � � � ^fk is a Boolean function with domain X1�X2� � � � �Xk;

where Xi is the domain of fi : Generalizing further, we let the symbol F.f1; : : : ; fk/

denote the Boolean function on X1 �X2 � � � � �Xk obtained by composing a given
function F W f�1;C1gk ! f�1;C1g with the functions f1; f2; : : : ; fk:

Finally, we establish some notation for rational approximation. Consider a
function f WX ! f�1;C1g; where X � Rn is an arbitrary set. For d > 0; we
define

R.f; d/ D inf
p;q

sup
x2X

ˇ̌̌̌
f .x/ �

p.x/

q.x/

ˇ̌̌̌
;

where the infimum is over multivariate polynomials p and q of degree up to d such
that q does not vanish on X: In words, R.f; d/ is the least error in an approximation
of f by a multivariate rational function of degree up to d: We will also take an
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interest in the quantity

RC.f; d/ D inf
p;q

sup
x2X

ˇ̌̌̌
f .x/ �

p.x/

q.x/

ˇ̌̌̌
;

where the infimum is over multivariate polynomials p and q of degree up to d such
that q is positive on X: These two quantities are related as follows:

RC.f; 2d/ 6 R.f; d/ 6 RC.f; d/: (15.3)

The second inequality here is trivial. The first follows from the fact that every ratio-
nal approximant p.x/=q.x/ of degree d gives rise to a degree-2d rational approxi-
mant with the same error and a positive denominator, namely, fp.x/q.x/g=q.x/2:

The infimum in the definitions of R.f; d/ and RC.f; d/ cannot in general
be replaced by a minimum [185], even when X is finite subset of R: This is in
contrast to the more familiar setting of a finite-dimensional normed linear space,
where least-error approximants are guaranteed to exist.

15.3 Auxiliary results on uniform approximation
In this section, we prove a number of auxiliary facts about uniform approximation
and its limiting case, sign-representation. This preparatory work will set the stage
for the proofs of our main results in later sections. We start by spelling out the
exact relationship between the rational approximation and sign-representation of a
Boolean function.

THEOREM 15.2 (Sherstov [200]). Let f WX ! f�1;C1g be a given function,
where X � Rn is compact. Then for every integer d;

deg˙.f / 6 d , RC.f; d/ < 1:
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PROOF. For the forward implication, let p be a polynomial of degree at most d

such that f .x/p.x/ > 0 for every x 2 X: Letting M D maxx2X jp.x/j and m D

minx2X jp.x/j; we have

RC.f; d/ 6 sup
x2X

ˇ̌̌̌
f .x/ �

p.x/

M

ˇ̌̌̌
6 1 �

m

M
< 1:

For the converse, fix a degree-d rational function p.x/=q.x/ with q.x/ > 0

on X and supX jf .x/ � fp.x/=q.x/gj < 1: Then clearly f .x/p.x/ > 0 on X:

Our next observation amounts to reformulating the rational approximation
of Boolean functions in a way that is more analytically pleasing.

THEOREM 15.3 (Sherstov [200]). Let f WX ! f�1;C1g be a given function,
where X � Rn is compact and deg˙.f / < ∞: Then for every integer d >
deg˙.f /; one has

RC.f; d/ D inf
c>1

c2 � 1

c2 C 1
;

where the infimum is over all c > 1 for which there exist polynomials p; q of degree
up to d such that 0 < 1

c
q.x/ 6 f .x/p.x/ 6 cq.x/ on X:

PROOF. In view of Theorem 15.2, the quantity RC.f; d/ is the infimum over all
ε < 1 for which there exist polynomials p and q of degree up to d such that
0 < .1 � ε/q.x/ 6 f .x/p.x/ 6 .1C ε/q.x/ on X: Equivalently, one may require
that

0 <
1 � ε
p

1 � ε2
q.x/ 6 f .x/p.x/ 6

1C ε
p

1 � ε2
q.x/:

Letting c D c.ε/ D
p

.1C ε/=.1 � ε/; the theorem follows.

325



Our next result shows that if a degree-d rational approximant achieves error
ε in approximating a given Boolean function, then a degree-2d approximant can
achieve error as small as ε2:

THEOREM 15.4 (Sherstov [200]). Let f WX ! f�1;C1g be a given function,
where X � Rn: Let d be a given integer. Then

RC.f; 2d/ 6

� ε

1C
p

1 � ε2

�2

;

where ε D R.f; d/:

PROOF. The theorem is clearly true for ε D 1: For 0 6 ε < 1; consider the
univariate rational function

S.t/ D
4
p

1 � ε2

1C
p

1 � ε2
�

t

t2 C .1 � ε2/
:

Calculus shows that

max
1�ε6jt j61Cε

j sgn t � S.t/j D

� ε

1C
p

1 � ε2

�2

:

Fix a sequence A1; A2; : : : of rational functions of degree at most d such that
supx2X jf .x/ � Am.x/j ! ε as m ! ∞: Then S.A1.x//; S.A2.x//; : : : is the
sought sequence of approximants to f; each a rational function of degree at most
2d with a positive denominator.

COROLLARY 15.5 (Sherstov [200]). Let f WX ! f�1;C1g be a given function,
where X � Rn: Then for all integers d > 1 and reals t > 2;

RC.f; td/ 6 R.f; d/t=2:
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PROOF. If t D 2k for some integer k > 1; then repeated applications of Theo-
rem 15.4 yield RC.f; 2kd/ 6 R.f; 2k�1d/2 6 � � � 6 R.f; d/2k

: The general case
follows because 2blog tc > t=2:

15.4 Threshold degree of conjunctions of functions
In this section, we prove our main results on conjunctions of Boolean functions. Re-
call that a key challenge will be, given a sign-representation φ.x; y/ of a composite
function f .x/ ^ g.y/; to suitably break down φ and recover individual rational
approximants of f and g: We now present an ingredient of our solution, namely, a
certain fact about pairs of matrices based on Farkas’ Lemma. For the time being,
we will formulate this fact in a clean and abstract way.

THEOREM 15.6 (Sherstov [200]). Fix matrices A; B 2 Rm�n and a real c > 1:

Consider the following system of linear inequalities in u; v 2 Rn:

1

c
Au 6Bv 6 cAu;

u > 0;

v > 0:

ƒ

(15.4)

If u D v D 0 is the only solution to (15.4), then there exist vectors w > 0 and
´ > 0 such that

wTAC ´TB > c.´TAC wTB/:

PROOF. If u D v D 0 is the only solution to (15.4), then linear programming
duality implies the existence of vectors w > 0 and ´ > 0 such that wTA > c´TA

and ´TB > cwTB: Adding the last two inequalities completes the proof.

For clarity of exposition, we first prove the main result of this section for the
case of two Boolean functions at least one of which is odd. While this case seems
restricted, we will see that it captures the full complexity of the problem.
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THEOREM 15.7 (Sherstov [200]). Let f WX ! f�1;C1g and gWY ! f�1;C1g

be given functions, where X; Y � Rn are arbitrary finite sets. Assume that f 6� 1

and g 6� 1: Let d D deg˙.f ^ g/: If f is odd, then

RC.f; 2d/CRC.g; d/ < 1:

PROOF. We first collect some basic observations. Since f 6� 1 and g 6� 1; we
have deg˙.f / 6 d and deg˙.g/ 6 d: Therefore, Theorem 15.2 implies that

RC.f; d/ < 1; RC.g; d/ < 1: (15.5)

In particular, the theorem holds if RC.g; d/ D 0: In the remainder of the proof, we
assume that RC.g; d/ D ε; where 0 < ε < 1:

By hypothesis, there exists a degree-d polynomial φ with the property that
f .x/ ^ g.y/ D sgnφ.x; y/ for all x 2 X; y 2 Y: Define

X�
D fx 2 X W f .x/ D �1g:

Since X is closed under negation and f is odd, we have f .x/ D 1, �x 2 X�:

We will make several uses of this fact in what follows, without further mention.

Put

c D

s
1C .1 � δ/ε
1 � .1 � δ/ε

;

where δ 2 .0; 1/ is sufficiently small. Since RC.g; d/ > .c2 � 1/=.c2 C 1/; we
know by Theorem 15.3 that there cannot exist polynomials p; q of degree up to d

such that

0 <
1

c
q.y/ 6 g.y/p.y/ 6 cq.y/; y 2 Y: (15.6)
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We claim, then, that there cannot exist reals ax > 0; x 2 X; not all zero, such that

1

c

X
x2X�

a�xφ.�x; y/ 6 g.y/
X

x2X�

axφ.x; y/ 6 c
X

x2X�

a�xφ.�x; y/; y 2 Y:

Indeed, if such reals ax were to exist, then (15.6) would hold for the polynomi-
als p.y/ D

P
x2X� axφ.x; y/ and q.y/ D

P
x2X� a�xφ.�x; y/: In view of the

nonexistence of the ax; Theorem 15.6 applies to the matrices

h
φ.�x; y/

i
y2Y; x2X�

;
h
g.y/φ.x; y/

i
y2Y; x2X�

and guarantees the existence of nonnegative reals λy;µy for y 2 Y such that

X
y2Y

λyφ.�x; y/C
X
y2Y

µyg.y/φ.x; y/

> c

0@X
y2Y

µyφ.�x; y/C
X
y2Y

λyg.y/φ.x; y/

1A ; x 2 X�: (15.7)

Define polynomials α;β on X by

α.x/ D
X

y2g�1.�1/

fλyφ.�x; y/ � µyφ.x; y/g;

β.x/ D
X

y2g�1.1/

fλyφ.�x; y/C µyφ.x; y/g:

Then (15.7) can be restated as

α.x/Cβ.x/ > cf�α.�x/Cβ.�x/g; x 2 X�:
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Both members of this inequality are nonnegative, and thus fα.x/ C β.x/g2 >

c2f�α.�x/Cβ.�x/g2 for x 2 X�: Since in addition α.�x/ 6 0 and β.�x/ > 0

for x 2 X�; we have

fα.x/Cβ.x/g2 > c2
fα.�x/Cβ.�x/g2; x 2 X�:

Letting γ .x/ D fα.x/Cβ.x/g2; we see that

RC.f; 2d/ 6 max
x2X

ˇ̌̌̌
f .x/ �

c2 C 1

c2
�
γ .�x/ � γ .x/

γ .�x/C γ .x/

ˇ̌̌̌
6

1

c2
< 1 � ε;

where the final inequality holds for all δ 2 .0; 1/ small enough.

REMARK 15.8 (Sherstov [200]). In Theorem 15.7 and elsewhere in this thesis, the
degree of a multivariate polynomial p.x1; x2; : : : ; xn/ is defined as the greatest total
degree of any monomial of p: A related notion is the partial degree of p; which is
the maximum degree of p in any one of the variables x1; x2; : : : ; xn: One readily
sees that the proof of Theorem 15.7 applies unchanged to this alternate notion.
Specifically, if the conjunction f .x/^g.y/ can be sign-represented by a polynomial
of partial degree d; then there exist rational functions F.x/ and G.y/ of partial
degree 2d such that kf � F k∞ C kg � Gk∞ < 1: In the same way, the program
of Section 15.5 carries over, with cosmetic changes, to the notion of partial degree.
Analogously, our proofs apply to hybrid definitions of degree, such as partial degree
over blocks of variables. Other, more abstract notions of degree can also be handled.
In the remainder of the chapter, we will maintain our focus on total degree and will
not elaborate further on its generalizations.

As promised, we will now remove the assumption, made in Theorem 15.7,
about one of the functions being odd. The result that we are about to prove settles
Theorem 15.1 from the introduction.

THEOREM 15.9 (Sherstov [200]). Let f WX ! f�1;C1g and gWY ! f�1;C1g

be given functions, where X; Y � Rn are arbitrary finite sets. Assume that f 6� 1
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and g 6� 1: Let d D deg˙.f ^ g/: Then

RC.f; 4d/CRC.g; 2d/ < 1 (15.8)

and, by symmetry,

RC.f; 2d/CRC.g; 4d/ < 1:

PROOF. It suffices to prove (15.8). Define X 0 � RnC1 by X 0 D f.x; 1/; .�x;�1/ W

x 2 Xg: It is clear that X 0 is closed under negation. Let f 0WX 0 ! f�1;C1g be the
odd Boolean function given by

f 0.x; b/ D

�
f .x/; b D 1;

�f .�x/; b D �1:

Let φ be a polynomial of degree no greater than d such that f .x/ ^ g.y/ �

sgnφ.x; y/: Fix an input Qx 2 X such that f . Qx/ D �1: Then f 0.x; b/ ^ g.y/ �

sgn
˚
K.1C b/φ.x; y/C φ.�x; y/φ. Qx; y/

	
for a large enough constant K � 1;

whence

deg˙.f 0
^ g/ 6 2d:

Theorem 15.7 now yields RC.f 0; 4d/ C RC.g; 2d/ < 1: Since RC.f; 4d/ 6
RC.f 0; 4d/ by definition, the proof is complete.

Finally, we obtain an analogue of this result for a conjunction of three and
more functions.

THEOREM 15.10 (Sherstov [200]). Let f1; f2; : : : ; fk be given Boolean functions
on finite sets X1; X2; : : : ; Xk � Rn; respectively. Assume that fi 6� 1 for i D
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1; 2; : : : ; k: Let d D deg˙.f1 ^ f2 ^ � � � ^ fk/: Then

kX
iD1

RC.fi ; D/ < 1

for D D 8d log 2k:

PROOF. Since f1; f2; : : : ; fk 6� 1; it follows that for each pair of indices i < j;

the function fi ^fj is a subfunction of f1^f2^� � �^fk: Theorem 15.9 now shows
that for each i < j;

RC.fi ; 4d/CRC.fj ; 4d/ < 1: (15.9)

Without loss of generality, RC.f1; 4d/ D maxiD1;:::;k RC.fi ; 4d/: Abbreviate ε D
RC.f1; 4d/: By (15.9),

RC.fi ; 4d/ < min
�

1 � ε;
1

2

�
; i D 2; 3; : : : ; k:

Now Corollary 15.5 implies that

kX
iD1

RC.fi ; D/ 6 εC
kX

iD2

RC.fi ; 4d/1Clog k < 1:

15.5 Threshold degree of other compositions
As we will now see, the development in Section 15.4 applies to many combining
functions other than conjunctions. Disjunctions are an illustrative starting point.
Consider two Boolean functions f WX ! f�1;C1g and gWY ! f�1;C1g; where
X; Y � Rn are finite sets and f; g 6� �1: Let d D deg˙.f _ g/: Then, we claim
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that

RC.f; 4d/CRC.g; 4d/ < 1: (15.10)

To see this, note first that the function f _ g has the same threshold degree as its
negation, f ^ g: Applying Theorem 15.9 to the latter function shows that

RC.f ; 4d/CRC.g; 4d/ < 1:

This is equivalent to (15.10) since approximating a function is the same as approx-
imating its negation: RC.f ; 4d/ D RC.f; 4d/ and RC.g; 4d/ D RC.g; 4d/: As
in the case of conjunctions, (15.10) can be strengthened to

RC.f; 2d/CRC.g; 2d/ < 1

if at least one of f; g is known to be odd. These observations carry over to disjunc-
tions of multiple functions, f1 _ f2 _ � � � _ fk:

The above discussion is still too specialized. In what follows, we consider
composite functions h.f1; f2; : : : ; fk/; where hW f�1;C1gk ! f�1;C1g is any
given Boolean function. We will shortly see that the results of the previous sections
hold for various h other than h D ANDk and h D ORk:

We start with some notation and definitions. Let f; hW f�1;C1gk !

f�1;C1g be given Boolean functions. Recall that f is called a subfunction of h

if for some fixed strings y; ´ 2 f�1;C1gk; one has

f .x/ D h.: : : ; .xi ^ yi/ _ ´i ; : : : /

for each x 2 f�1;C1gk: In words, f can be obtained from h by replacing some of
the variables x1; x2; : : : ; xk with fixed values, �1 orC1:
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DEFINITION 15.11 (Sherstov [200]). A function F W f�1;C1gk ! f�1;C1g is
AND-reducible if for each pair of indices i; j; where 1 6 i 6 j 6 k; at least one
of the eight functions

xi ^ xj ;

xi ^ xj ;

xi ^ xj ;

xi ^ xj ;

xi _ xj ;

xi _ xj ;

xi _ xj ;

xi _ xj

is a subfunction of F.x/:

THEOREM 15.12 (Sherstov [200]). Let f1; f2; : : : ; fk be nonconstant Boolean
functions on finite sets X1; X2; : : : ; Xk � Rn; respectively. Let F W f�1;C1gk !

f�1;C1g be an AND-reducible function. Put d D deg˙.F.f1; f2; : : : ; fk//: Then

kX
iD1

RC.fi ; D/ < 1

for D D 8d log 2k:

PROOF. Since F is AND-reducible, it follows that for each pair of indices i < j;

one of the following eight functions is a subfunction of F.f1; : : : ; fk/:

fi ^ fj ;

fi ^ fj ;

fi ^ fj ;

fi ^ fj ;

fi _ fj ;

fi _ fj ;

fi _ fj ;

fi _ fj :

By Theorem 15.9 and the opening remarks of this section,

RC.fi ; 4d/CRC.fj ; 4d/ < 1:
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The remainder of the proof is identical to the proof of Theorem 15.10, starting at
equation (15.9).

In summary, the development in Section 15.4 naturally extends to composi-
tions F.f1; f2; : : : ; fk/ for various F: For a function F W f�1;C1gk ! f�1;C1g to
be AND-reducible, F must clearly depend on all of its inputs. This necessary condi-
tion is often sufficient, for example when F is a read-once AND/OR/NOT formula
or a halfspace. As a result, we have the following corollary of Theorem 15.12.

COROLLARY 15.13 (Sherstov [200]). Let f1; f2; : : : ; fk be nonconstant Boolean
functions on finite sets X1; X2; : : : ; Xk � Rn; respectively. Let F W f�1;C1gk !

f�1;C1g be a halfspace or a read-once AND/OR/NOT formula. Assume that F de-
pends on all of its k inputs and that the composition F.f1; f2; : : : ; fk/ has threshold
degree d: Then there is a degree-D rational function pi=qi on Xi ; i D 1; 2; : : : ; k;

such that

kX
iD1

max
xi 2Xi

ˇ̌̌̌
fi.xi/ �

pi.xi/

qi.xi/

ˇ̌̌̌
< 1;

where D D 8d log 2k:

REMARK (Sherstov [200]). If more information is available about the combining
function F; Theorem 15.12 can be generalized to let some of f1; : : : ; fk be constant
functions. For example, some or all of the functions f1; : : : ; fk in Theorem 15.10
can be identically true. Another direction for generalization is as follows. In Defi-
nition 15.11, one considers all the

�
k

2

�
distinct pairs of indices .i; j /: If one happens

to know that f1 is harder to approximate than f2; : : : ; fk; then one can relax Def-
inition 15.11 to examine only the k � 1 pairs .1; 2/; .1; 3/; : : : ; .1; k/: We do not
formulate these extensions as theorems, the fundamental technique being already
clear.
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15.6 Additional observations
Our results in this chapter can be viewed as a technique for proving lower bounds on
the threshold degree of composite functions F.f1; f2; : : : ; fk/: We make this view
explicit in the following statement, which is the contrapositive of Theorem 15.12.

THEOREM 15.14 (Sherstov [200]). Let f1; f2; : : : ; fk be nonconstant Boolean
functions on finite sets X1; X2; : : : ; Xk � Rn; respectively. Let F W f�1;C1gk !

f�1;C1g be an AND-reducible function. Suppose that
P

RC.fi ; D/ > 1 for some
integer D: Then

deg˙.F.f1; f2; : : : ; fk// >
D

8 log 2k
: (15.11)

REMARK 15.15 (Sherstov [200]). Theorem 15.14 is close to optimal. For example,
when F D ANDk; the lower bound in (15.11) is tight up to a factor of �.k log k/:

This can be seen by the well-known argument [33] described in the introduction.
Specifically, fix an integer D such that

P
RC.fi ; D/ < 1: Then there exists a

rational function pi.xi/=qi.xi/ on Xi ; for i D 1; 2; : : : ; k; such that qi is positive
on Xi and

kX
iD1

max
xi 2Xi

ˇ̌̌̌
fi.xi/ �

pi.xi/

qi.xi/

ˇ̌̌̌
< 1:

As a result,

k̂

iD1

fi.xi/ � sgn

 
k � 1C

kX
iD1

fi.xi/

!
� sgn

 
k � 1C

kX
iD1

pi.xi/

qi.xi/

!
:
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Multiplying by
Q

qi.xi/ yields

k̂

iD1

fi.xi/ � sgn

�
.k � 1/

kY
iD1

qi.xi/C

kX
iD1

pi.xi/
Y

j 2f1;:::;kgnfig

qj .xj /

�
;

whence deg˙.f1^f2^� � �^fk/ 6 kD: This settles our claim regarding F D ANDk:

For arbitrary AND-reducible functions F W f�1;C1gk ! f�1;C1g; a similar ar-
gument shows that the lower bound in (15.11) is tight up to a polynomial in k;
cf. Theorem 31 of Klivans et al. [121].

We close this section with one additional result.

THEOREM 15.16 (Sherstov [200]). Let f WX ! f�1;C1g be a given function,
where X � Rn is finite. Then for every integer k > 2;

deg˙.f ^ f ^ � � � ^ f›
k

/ 6 .8k log k/ � deg˙.f ^ f /: (15.12)

PROOF. Put d D deg˙.f ^ f /: Theorem 15.9 implies that RC.f; 4d/ < 1=2;

whence RC.f; 8d log k/ < 1=k by Corollary 15.5. By the argument applied earlier
in Remark 15.15, this proves the theorem.

To illustrate, let C be a given family of Boolean functions on f0; 1gn: Then
Theorem 15.16 shows that the task of constructing a sign-representation for the
intersections of up to k members from C reduces to the case k D 2: In other words,
solving the problem for k D 2 essentially solves it for all k: The dependence on k

in (15.12) is tight up to a factor of 16 log k by the work of Minsky and Papert [153],
even in the simple case when f D ORn:
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Chapter 16

Lower Bounds for Intersections of Two Halfspaces
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In this chapter, we study the structural complexity of intersections of two
halfspaces, a central concept class in computational learning theory. Specifically,
we construct two halfspaces on f0; 1gn whose intersection has threshold degree
�.
p

n/; an exponential improvement on previous lower bounds. This solves an
open problem due to Klivans [120] and rules out the use of perceptron-based tech-
niques for PAC-learning the intersection of even two halfspaces. We also prove that
the intersection of two majority functions has threshold degree ˝.log n/; which is
tight and settles a conjecture of O’Donnell and Servedio [163]. We obtain these
results by a detailed study of the rational approximation of halfspaces, along with
the relationship between rational approximation and sign-representation proved in
the previous chapter.

16.1 Introduction
The technical focus of this chapter is on the uniform approximation of Boolean
functions by rational functions over the reals. Rational approximation, surveyed in
detail in Section 16.2, is a fascinating topic with a variety of applications to com-
plexity theory and learning theory. We will primarily be interested in the rational
approximation of halfspaces. Specifically, consider the function f W f�1;C1gn

2

!

f�1;C1g given by

f .x/ D sgn

 
1C

nX
iD1

nX
j D1

2ixij

!
; (16.1)

which is known in the literature as the canonical halfspace. A key technical contri-
bution of this chapter is to determine the least degree required for approximating f

uniformly within ε by a rational function, for any given ε: Analogously, we deter-
mine the least degree required for approximating the majority function by a rational
function within any given error ε: This development spans Sections 16.3–16.7.

In the concluding section, we present applications of our work to computa-
tional learning theory. These applications are based on the relationship between
rational approximation and sign-representation, proved in the previous chapter.
Specifically, let f be an arbitrary Boolean function, and let the symbol f ^ f
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denote the conjunction of two independent copies of f: Among other things, we
proved in Chapter 15 that the threshold degree of the conjunction f ^ f is always
within a constant factor of the least degree of a rational function that approximates
f within 1=3: As a consequence, we obtain the following result.

THEOREM 16.1 (Sherstov [200]). Let f W f�1;C1gn
2

! f�1;C1g be given by
(16.1). Then

deg˙.f ^ f / D ˝.n/:

The lower bound in Theorem 16.1 is tight and matches the upper bounds of Beigel et
al. [33]. Previously, only an ˝.log n= log log n/ lower bound was known on the
threshold degree of the intersection of two halfspaces, due to O’Donnell and Serve-
dio [163], preceded in turn by an ω.1/ lower bound of Minsky and Papert [153].

Theorem 16.1 is of interest in learning theory. By the results of Klivans et
al. [122, 121], Boolean functions with low threshold degree can be efficiently PAC
learned under arbitrary distributions, by expressing such an unknown function as a
perceptron with unknown weights and solving the associated linear program. Kli-
vans et al. [121] showed that intersections of light halfspaces have low threshold
degree, thereby giving an efficient PAC algorithm for this class. That result raised
hopes that intersections of arbitrary k halfspaces on the hypercube have low thresh-
old degree, for k small. Recall from previous chapters that no efficient algorithm
is known for PAC learning the intersection of even k D 2 halfspaces, despite much
effort and known solutions to some restrictions of the problem [139, 216, 121, 125].

Motivated by these considerations, Klivans [120, �7] posed the problem of
proving a lower bound of ˝.log n/ or higher on the threshold degree of the inter-
section of two halfspaces. Theorem 16.1 solves this problem with a lower bound of
˝.
p

n/; showing that perceptron-based techniques will not yield a subexponential
algorithm for PAC learning the intersection of even two halfspaces. It is the first
unconditional, structural lower bound for this learning problem. Prior to our work,
all known hardness results [40, 10, 128, 113] were based on complexity-theoretic
assumptions. We complement it with the following result.
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THEOREM 16.2 (Sherstov [200]). Let f W f�1;C1gn
2

! f�1;C1g be given by
(16.1). Then

deg˙

�
f ^MAJd

p
ne

�
D �.

p
n/:

In words, even if one of the halfspaces in Theorem 16.1 is replaced by a majority
function, the threshold degree will remain high, resulting in a challenging learning
problem. Finally, we have:

THEOREM 16.3 (Sherstov [200]). The intersection of two majority functions satis-
fies

deg˙.MAJn ^MAJn/ D ˝.log n/:

Theorem 16.3 is tight, matching the construction of Beigel et al. [33]. It
settles a conjecture of O’Donnell and Servedio [163], who proved a lower bound of
˝.log n= log log n/ with completely different techniques and conjectured that the
true answer was ˝.log n/:

16.2 Rational approximation and its applications
The study of rational approximation dates back to the remarkable 1877 article by
E. I. Zolotarev [228], a student of P. L. Chebyshev. Interest in the subject was
revived a century later when D. J. Newman [156] obtained surprisingly accurate
rational approximants for several common functions in C Œ�1; 1�; such as jxj and xα

for rational α > 0: In particular, Newman’s work contributed an efficient rational
approximant for the sign function, since sgn x D jxj=x for x ¤ 0: Newman’s
discovery inspired considerable progress in the area, as surveyed in the monograph
of Petrushev and Popov [168].

Newman’s work on rational approximation has also found important ap-
plications in theoretical computer science, including the proof due to Beigel et
al. [33] that PP is closed under intersection, circuit lower bounds due to Paturi
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and Saks [166] and Siu et al. [210], and PAC learning algorithms due to Klivans
et al. [121]. In addition, rational approximation of Boolean functions exactly cap-
tures the quantum query complexity in a natural model called postselection, due to
Aaronson [1].

Finally, lower and upper bounds for rational approximation are of interest
because of their relationship to polynomial approximation. Consider a Boolean
function f WX ! f�1;C1g; for some finite set X � Rn: By analogy with the
polynomial case, define rdegε.f / to be the least degree of a rational function A

such that kf � Ak∞ 6 ε: For all 0 < ε < 1; the following relationships are well-
known and straightforward to verify:

1

2
deg˙.f / 6 rdegε.f / 6 degε.f /:

Furthermore, our work in the previous chapter shows that

deg˙.f ^ f / D �.rdeg1=3.f //: (16.2)

To summarize, the study of rational approximation contributes both lower and up-
per bounds for polynomial representations, as well as a tight characterization for
functions of the form f ^ f:

Despite this motivation, the rational approximation of Boolean functions
remains poorly understood and has seen little progress since Newman’s seminal
paper in 1964. To illustrate some of the counterintuitive phenomena involved in
rational approximation, consider the OR function on the hypercube f0; 1gn: Recall
from Theorem 2.5 that deg1=3.ORn/ D �.

p
n/; meaning that a polynomial of

degree �.
p

n/ is required for approximation within 1=3: At the same time, we
claim that rdegε.ORn/ D 1 for all 0 < ε < 1: Indeed, let

AM .x/ D
1 �M.x1 C � � � C xn/

1CM.x1 C � � � C xn/
:
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Then kf � AMk∞ ! 0 as M ! ∞: This example illustrates that proving lower
bounds for rational functions can be a difficult and unintuitive task.

In this chapter, we study the rational approximation of halfspaces. Our main
technical contribution is the following result on the canonical halfspace.

THEOREM 16.4 (Sherstov [200]). Let f W f�1;C1gn
2

! f�1;C1g be given by

f .x/ D sgn

0@1C

nX
iD1

nX
j D1

2ixij

1A :

Then for 1=3 < ε < 1;

rdegε.f / D �

�
1C

n

logf1=.1 � ε/g

�
:

Furthermore, for all ε > 0;

rdegε.f / 6 64ndlog2 ne C 1:

In particular, Theorem 16.4 shows that a rational function of degree �.n/ is
necessary and sufficient for approximating the canonical halfspace within 1=3: The
best previous degree lower bound for constant-error approximation of any half-
space was ˝.log n= log log n/; obtained implicitly in [163]. We complement Theo-
rem 16.4 with a full solution for another common halfspace, the majority function.

THEOREM 16.5 (Sherstov [200]). The majority function satisfies

rdegε.MAJn/ D

„
�

�
log

�
2n

log.1=ε/

�
� log

1

ε

�
; 2�n < ε < 1=3;

�

�
1C

log n

logf1=.1 � ε/g

�
; 1=3 6 ε < 1:
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The upper bound in Theorem 16.5 is relatively straightforward. Indeed, an
upper bound of O.logf1=εg log n/ for ε < 1=3 was known and used in the com-
plexity literature long before our work [166, 210, 33, 121], and we only somewhat
tighten that upper bound and extend it to all ε: Our primary contribution in Theo-
rem 16.5, then, is a matching lower bound on the degree, which requires consider-
able effort. The closest previous line of research concerns continuous approxima-
tion of the sign function on Œ�1;�ε� [ Œε; 1�; which unfortunately gives no insight
into the discrete case. For example, the lower bound derived by Newman [156] in
the continuous setting is based on the integration of relevant rational functions with
respect to a suitable weight function, which has no meaningful discrete analogue.

16.3 Technical background
The reader may find it helpful to review the definitions and background results
in Section 15.2, which are directly relevant to our work in this chapter. We will
need a number of additional conventions and results. If µ1; : : : ;µk are probability
distributions on finite sets X1; : : : ; Xk; respectively, then µ1 � � � � � µk stands for
the probability distribution on X1 � � � � �Xk given by

.µ1 � � � � � µk/.x1; : : : ; xk/ D

kY
iD1

µi.xi/:

The following combinatorial identity is well-known.

FACT 16.6. For every integer n > 1 and every polynomial p 2 Pn�1;

nX
iD0

 
n

i

!
.�1/ip.i/ D 0:
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This fact can be verified by repeated differentiation of the real function

.t � 1/n
D

nX
iD0

 
n

i

!
.�1/n�i t i

at t D 1; as explained in [163].

We now recall Newman’s classical construction of a rational approximant
to the sign function [156].

THEOREM 16.7 (Newman [156]). Fix N > 1: Then for every integer k > 1; there
is a rational function S.t/ of degree k such that

max
16jt j6N

j sgn t � S.t/j 6 1 �N �1=k (16.3)

and the denominator of S is positive on Œ�N;�1� [ Œ1; N �:

PROOF (adapted from Newman [156]). Consider the univariate polynomial

p.t/ D

kY
iD1

�
t CN .2i�1/=.2k/

�
:

By examining every interval ŒN i=.2k/; N .iC1/=.2k/�; where i D 0; 1; : : : ; 2k�1; one
sees that

p.t/ >
N 1=.2k/ C 1

N 1=.2k/ � 1
jp.�t /j; 1 6 t 6 N: (16.4)

Letting

S.t/ D N �1=.2k/
�

p.t/ � p.�t /

p.t/C p.�t /
;
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one has (16.3). The positivity of the denominator of S on Œ�N;�1� [ Œ1; N � is a
consequence of (16.4).

A useful consequence of Newman’s theorem is the following general state-
ment on decreasing the error in rational approximation.

THEOREM 16.8. Let f WX ! f�1;C1g be given, where X � Rn: Let d be a given
integer, ε D R.f; d/: Then for k D 1; 2; 3; : : : ;

R.f; kd/ 6 1 �

�
1 � ε
1C ε

�1=k

:

PROOF. We may assume that ε < 1; the theorem being trivial otherwise. Let S be
the degree-k rational approximant to the sign function for N D .1 C ε/=.1 � ε/;
as constructed in Theorem 16.7. Let A1; A2; : : : ; Am; : : : be a sequence of rational
functions on X of degree at most d such that supX jf � Amj ! ε as m! ∞: The
theorem follows by considering the sequence of approximants S.Am.x/=f1 � εg/
as m! ∞:

The following result generalizes Minsky and Papert’s symmetrization tech-
nique, given by Propositions 2.2 and 8.2, to rational functions.

PROPOSITION 16.9 (Sherstov [200]). Let n1; : : : ; nk be positive integers, and α;β
distinct reals. Let GW fα;βgn1 � � � � � fα;βgnk ! f�1;C1g be a function such that
G.x1; : : : ; xk/ � G.σ1x1; : : : ;σkxk/ for all σ1 2 Sn1

; : : : ;σk 2 Snk
: Let d be a

given integer. Then for each ε > RC.G; d/; there exists a rational function p=q on
Rk of degree at most d such that for all x in the domain of G; one has

ˇ̌̌̌
G.x/ �

p.: : : ; xi;1 C � � � C xi;ni
; : : : /

q.: : : ; xi;1 C � � � C xi;ni
; : : : /

ˇ̌̌̌
< ε

and q.: : : ; xi;1 C � � � C xi;ni
; : : : / > 0:

PROOF. Clearly, we may assume that ε < 1: Using the linear bijection .α;β/ $

.0; 1/ if necessary, we may further assume that α D 0 and β D 1: Since ε >
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RC.G; d/; there are polynomials P; Q of degree up to d such that for all x in the
domain of G; one has Q.x/ > 0 and

.1 � ε/Q.x/ < G.x/P.x/ < .1C ε/Q.x/:

By Proposition 8.2, there exist polynomials p; q on Rk of degree at most d such
that

E
σ12Sn1

;:::;σk2Snk

�
P
�
σ1x1; : : : ;σkxk

��
D p

�
: : : ; xi;1 C � � � C xi;ni

; : : :
�

and

E
σ12Sn1

;:::;σk2Snk

�
Q
�
σ1x1; : : : ;σkxk

��
D q

�
: : : ; xi;1 C � � � C xi;ni

; : : :
�

for all x in the domain of G: Then the required properties of p and q follow imme-
diately from the corresponding properties of P and Q:

16.4 Upper bounds for the approximation of halfspaces
The lower bounds in Theorem 16.4, for the rational approximation of the canonical
halfspace, are considerably more involved than the upper bounds. To help build
some intuition in the former case, we prove the upper bounds first.

We showed in Section 16.2 that RC.ORn; 1/ D 0: A similar example is the
function OMBnW f0; 1gn ! f�1;C1g given by (4.34). Indeed, letting

AM .x/ D
1C

Pn
iD1.�M/ixi

1C
Pn

iD1 M ixi

;
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we have kOMBn � AMk∞ ! 0 as M ! ∞: Thus,

RC.OMBn; 1/ D 0:

With this construction in mind, we now turn to the canonical halfspace. We start
with an auxiliary result that generalizes the above argument.

LEMMA 16.10 (Sherstov [200]). Let f W f0;˙1;˙2gn ! f�1;C1g be the function
given by f .´/ D sgn.1C

Pn
iD1 2i´i/: Then

RC.f; 64/ D 0:

PROOF. Consider the deterministic finite automaton in Figure 16.1. The automaton
has two terminal states (labeled “C” and “�”) and three nonterminal states (the
start state and two additional states). We interpret the output of the automaton to
be C1 and �1 at the two terminal states, respectively, and 0 otherwise. A string
´ D .´n; ´n�1; : : : ; ´1; 0/ 2 f0;˙1;˙2gnC1; when read by the automaton left
to right, forces it to output exactly sgn.

Pn
iD1 2i´i/: If the automaton is currently

at a nonterminal state, this state is determined uniquely by the last two symbols
read. Hence, the output of the automaton on input ´ D .´n; ´n�1; : : : ; ´1; 0/ 2

f0;˙1;˙2gnC1 is given by

sgn

 
nX

iD0

2iα.´iC2; ´iC1; ´i/

!

for a suitable map αW f0;˙1;˙2g3 ! f0;�1;C1g; where we adopt the shorthand
´nC1 D ´nC2 D ´0 D 0: Put

AM .´/ D
1C

Pn
iD0 M iC1α.´iC2; ´iC2; ´i/

1C
Pn

iD0 M iC1jα.´iC2; ´iC2; ´i/j
:
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–2
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2

–1

0, 1, 20,–1,–2

–2 2

Figure 16.1: Finite automaton for the proof of Lemma 16.10.

By interpolation, the numerator and denominator of AM can be represented by poly-
nomials of degree no more than 4 � 4 � 4 D 64: On the other hand, we have
kf � AMk∞ ! 0 as M ! ∞:

We are now prepared to prove our desired upper bounds for halfspaces.

THEOREM 16.11 (Sherstov [200]). Let f W f�1;C1gnk ! f�1;C1g be the func-
tion given by

f .x/ D sgn

0@1C

nX
iD1

kX
j D1

2ixij

1A : (16.5)

Then

RC.f; 64kdlog ke C 1/ D 0: (16.6)

In addition, for all integers d > 1;

RC.f; d/ 6 1 � .k2nC1/�1=d : (16.7)

In particular, Theorem 16.11 settles all upper bounds on rdegε.f / in Theorem 16.4.
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PROOF OF THEOREM 16.11. Theorem 16.7 immediately implies (16.7) in view of
the representation (16.5). It remains to prove (16.6). In the degenerate case k D 1;

we have f � xn1 and thus (16.6) holds. In what follows, we assume that k > 2

and put � D dlog ke: We adopt the convention that xij � 0 for i > n: For ` D
0; 1; 2; : : : ; define

S` D

�X
iD1

kX
j D1

2i�1x`�Ci;j :

Then

nX
iD1

kX
j D1

2i�1xij D
�
S0 C 22�S2 C 24�S4 C 26�S6 C � � �

�
C
�
2�S1 C 23�S3 C 25�S5 C 27�S7 C � � �

�
: (16.8)

Now, each S` is an integer in Œ�22� C 1; 22� � 1� and therefore admits a represen-
tation as

S` D ´`;1 C 2´`;2 C 22´`;3 C � � � C 22��1´`;2�;

where ´`;1; : : : ; ´`;2� 2 f�1; 0;C1g: Furthermore, each S` only depends on k� of
the original variables xij ; whence ´`;1; : : : ; ´`;2� can all be viewed as polynomials
of degree at most k� in the original variables. Rewriting (16.8),

nX
iD1

kX
j D1

2i�1xij D

0@X
i>1

2i�1´`.i/;j.i/

1AC
0@ X

i>�C1

2i�1´`0.i/;j 0.i/

1A
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for appropriate indexing functions `.i/; `0.i/; j.i/; j 0.i/: Thus,

f .x/ � sgn

0@1C

�X
iD1

2i ´`.i/;j.i/˜C

X
i>�C1

2i
�
´`.i/;j.i/ C ´`0.i/;j 0.i/

�
�

1A :

Since the underbraced expressions range in f0;˙1;˙2g and are polynomials of
degree at most k� in the original variables, Lemma 16.10 implies (16.6).

16.5 Preparatory analytic work on halfspaces
This section sets the stage for our lower bounds with some preparatory results about
halfspaces. It will be convenient to establish some additional notation, for use in
this section only. Here, we typeset real vectors in boldface (x1; x2; z; v) to better
distinguish them from scalars. The i th component of a vector x 2 Rn is denoted by
.x/i ; while the symbol xi is reserved for another vector from some enumeration. In
keeping with this convention, we let ei denote the vector with 1 in the i th component
and zeroes everywhere else. For x; y 2 Rn; the vector xy 2 Rn is given by .xy/i �

.x/i.y/i : More generally, for a polynomial p on Rk and vectors x1; : : : ; xk 2 Rn;

we define p.x1; : : : ; xk/ 2 Rn by .p.x1; : : : ; xk//i D p..x1/i ; : : : ; .xk/i/: The
expectation of a random variable x 2 Rn is defined componentwise, i.e., the vector
EŒx� 2 Rn is given by .EŒx�/i � EŒ.x/i �:

For convenience, we adopt the notational shorthand α0 D 1 for all α 2 R:

In particular, if x 2 Rn is a given vector, then x0 D .1; 1; : : : ; 1/ 2 Rn: A scalar
α 2 R; when interpreted as a vector, stands for .α;α; : : : ;α/: This shorthand allows
one to speak of spanf1; z; z2; : : : ; zkg; for example, where z 2 Rn is a given vector.

LEMMA 16.12 (Sherstov [200]). Let positive integers N and m be given. Let
α0;α1; : : : ;α4m be suitable reals. Then for each b 2 f0; 1gN ; there exists a proba-
bility distribution µb on f0;˙1; : : : ;˙mgN such that

E
v�µb

Œ.2vC b/d � D .αd ;αd ; : : : ;αd /; d D 0; 1; 2; : : : ; 4m:
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PROOF. Let λ0 and λ1 be the distributions on f0;˙1; : : : ;˙mg given by

λ0.t/ D 16�m

 
4mC 1

2mC 2t

!

and

λ1.t/ D 16�m

 
4mC 1

2mC 2t C 1

!
:

Then for d D 0; 1; : : : ; 4m; one has

E
t�λ0

Œ.2t/d � � E
t�λ1

Œ.2t C 1/d � D 16�m

4mC1X
tD0

.�1/t

 
4mC 1

t

!
.t � 2m/d

D 0; (16.9)

where (16.9) holds by Fact 16.6. Now, let

µb D λ.b/1
� λ.b/2

� � � � � λ.b/N
:

Then in view of (16.9), the lemma holds by letting αd D Eλ0
Œ.2t/d � for d D

0; 1; 2; : : : ; 4m:

Using the previous lemma, we will now establish another auxiliary result
pertaining to halfspaces.

LEMMA 16.13 (Sherstov [200]). Put

z D .�2n;�2n�1; : : : ;�20; 20; : : : ; 2n�1; 2n/ 2 R2nC2:
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There are random variables x1; x2; : : : ; xnC1 2 f0;˙1;˙2; : : : ;˙.3n C 1/g2nC2

such that

nC1X
iD1

2i�1xi � z (16.10)

and

E

"
nY

iD1

xdi

i

#
2 spanf.1; 1; : : : ; 1/g (16.11)

for d1; : : : ; dn 2 f0; 1; : : : ; 4ng:

PROOF. Let

xi D 2yi � yi�1 C enC1Ci � enC2�i ; i D 1; 2; : : : ; nC 1;

where y0; y1; : : : ; ynC1 are suitable random variables with y0 � ynC1 � 0: Then
property (16.10) is immediate. We will construct y0; y1; : : : ; ynC1 such that the
remaining property (16.11) holds as well.

Let N D 2nC 2 and m D n in Lemma 16.12. Then reals α0;α1; : : : ;α4n

exist with the property that for each b 2 f0; 1g2nC2; a probability distribution µb

can be found on f0;˙1; : : : ;˙ng2nC2 such that

E
v�µb

Œ.2vC b/d � D αd .1; 1; : : : ; 1/; d D 0; 1; : : : ; 4n: (16.12)

Now, we will specify the distribution of y0; y1; : : : ; yn by giving an algorithm for
generating yi from yi�1: First, recall that y0 � ynC1 � 0: The algorithm for gener-
ating yi given yi�1 .i D 1; 2; : : : ; n/ is as follows.
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(1) Let u be the unique integer vector such that 2u � yi�1 C enC1Ci � enC2�i 2

f0; 1g2nC2:

(2) Draw a random vector v � µb; where b D 2u � yi�1 C enC1Ci � enC2�i :

(3) Set yi D vC u:

One easily verifies that y0; y1; : : : ; ynC1 2 f0;˙1; : : : ;˙3ng2nC2:

Let R denote the resulting joint distribution of .y0; y1; : : : ; ynC1/: Let i 6 n:

Then conditioned on any fixed value of .y0; y1; : : : ; yi�1/ in the support of R; the
random variable xi is by definition independent of x1; : : : ; xi�1 and is distributed
identically to 2vC b; for some fixed vector b 2 f0; 1g2nC2 and a random variable
v � µb: In view of (16.12), we conclude that

E

"
nY

iD1

xdi

i

#
D .1; 1; : : : ; 1/

nY
iD1

αdi

for all d1; d2; : : : ; dn 2 f0; 1; : : : ; 4ng; which establishes (16.11). It remains to note
that x1; x2; : : : ; xn 2 f�2n;�2n C 1; : : : ;�1; 0; 1; : : : ; 2n; 2n C 1g2nC2; whereas
xnC1 D �yn C e2nC2 � e1 2 f0;˙1; : : : ;˙.3nC 1/g2nC2:

At last, we arrive at the main theorem of this section, which will play a
crucial role in our analysis of the rational approximation of halfspaces.

THEOREM 16.14 (Sherstov [200]). For i D 0; 1; 2; : : : ; n; define

Ai D

(
.x1; : : : ; xnC1/ 2 f0;˙1; : : : ;˙.3nC 1/gnC1

W

nC1X
j D1

2j �1xj D 2i

)
:

Let p.x1; : : : ; xnC1/ be a real polynomial with sign .�1/i throughout Ai .i D

0; 1; 2; : : : ; n/ and sign .�1/iC1 throughout �Ai .i D 0; 1; 2; : : : ; n/: Then

deg p > 2nC 1:
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PROOF. For the sake of contradiction, suppose that p has degree no greater
than 2n: Put z D .�2n;�2n�1; : : : ;�20; 20; : : : ; 2n�1; 2n/: Let x1; : : : ; xnC1 be
the random variables constructed in Lemma 16.13. By (16.11) and the identity
xnC1 � 2�nz �

Pn
iD1 2i�n�1xi ; we have

EŒp.x1; : : : ; xnC1/� 2 spanf1; z; z2; : : : ; z2n
g;

whence

EŒp.x1; : : : ; xnC1/� D q.z/

for a univariate polynomial q 2 P2n: By (16.10) and the sign behavior of p; we
have

sgn q.2i/ D .�1/i ; i D 0; 1; 2; : : : ; n;

and

sgn q.�2i/ D .�1/iC1; i D 0; 1; 2; : : : ; n:

Therefore, q has at least 2nC 1 roots. Since q 2 P2n; we arrive at a contradiction.
It follows that the assumed polynomial p does not exist.

16.6 Lower bounds for the approximation of halfspaces
The purpose of this section is to prove that the canonical halfspace cannot be ap-
proximated well by a rational function of low degree. A starting point in our dis-
cussion is a criterion for inapproximability by low-degree rational functions, which
is applicable not only to halfspaces but any odd Boolean functions on Euclidean
space.
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THEOREM 16.15 (Sherstov [200]). Fix a nonempty finite subset S � Rm with
S \ �S D ∅: Define f WS [ �S ! f�1;C1g by

f .x/ D

�
C1; x 2 S;

�1; x 2 �S:

Let ψ be a real function such that

ψ.x/ > δjψ.�x/j; x 2 S; (16.13)

for some δ 2 .0; 1/ and

X
S[�S

ψ.x/u.x/ D 0 (16.14)

for every polynomial u of degree at most d: Then

RC.f; d/ >
2δ

1C δ
:

PROOF. Fix polynomials p; q of degree at most d such that q is positive on S[�S:

Put

ε D max
S[�S

ˇ̌̌̌
f .x/ �

p.x/

q.x/

ˇ̌̌̌
:

We assume that ε < 1 since otherwise there is nothing to show. For x 2 S;

.1 � ε/q.x/ 6 p.x/ 6 .1C ε/q.x/ (16.15)
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and

.1 � ε/q.�x/ 6 �p.�x/ 6 .1C ε/q.�x/: (16.16)

Consider the polynomial u.x/ D q.x/Cq.�x/Cp.x/�p.�x/: Equations (16.15)
and (16.16) show that for x 2 S; one has u.x/ > .2 � ε/fq.x/ C q.�x/g and
ju.�x/j 6 εfq.x/C q.�x/g; whence

u.x/ >

�
2

ε
� 1

�
ju.�x/j; x 2 S: (16.17)

We also note that

u.x/ > 0; x 2 S: (16.18)

Since u has degree at most d; we have by (16.14) that

X
x2S

fψ.x/u.x/C ψ.�x/u.�x/g D
X

S[�S

ψ.x/u.x/ D 0;

whence

ψ.x/u.x/ 6 jψ.�x/u.�x/j

for some x 2 S: At the same time, it follows from (16.13), (16.17), and (16.18) that

ψ.x/u.x/ > δ
�

2

ε
� 1

�
jψ.�x/u.�x/j; x 2 S:

We immediately obtain δ.f2=εg � 1/ < 1; as was to be shown.
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REMARK 16.16 (Sherstov [200]). The method of Theorem 16.15 amounts to re-
formulating (16.17) and (16.18) as a linear program and exhibiting a solution to its
dual. The presentation above does not explicitly use the language of linear programs
or appeal to duality, however, because our goal is solely to prove the correctness of
our method and not its completeness.

Using the criterion of Theorem 16.15 and our preparatory work in Sec-
tion 16.5, we now establish a key lower bound for the rational approximation of
halfspaces within constant error.

THEOREM 16.17 (Sherstov [200]). Let f W f0;˙1; : : : ;˙.3nC1/gnC1 ! f�1;C1g

be given by

f .x/ D sgn

 
1C

nC1X
iD1

2ixi

!
:

Then

RC.f; n/ D ˝.1/:

PROOF. Let A0; A1; : : : ; An be as defined in Theorem 16.14. Put A D
S

Ai and
define gWA [ �A! f�1;C1g by

g.x/ D

�
.�1/i ; x 2 Ai ;

.�1/iC1; x 2 �Ai :

Then deg˙.f / > 2n by Theorem 16.14. As a result, Theorem 4.6 guarantees the
existence of a function φWA [ �A! R; not identically zero, such that

φ.x/g.x/ > 0; x 2 A [ �A; (16.19)
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and

X
A[�A

φ.x/u.x/ D 0 (16.20)

for every polynomial u of degree at most 2n: Put

p.x/ D

n�1Y
j D0

 
�2j
p

2C

nC1X
iD1

2i�1xi

!

and

ψ.x/ D .�1/n
fφ.x/ � φ.�x/gp.x/:

Define S D Anψ�1.0/: Then S ¤ ∅ by (16.19) and the fact thatφ is not identically
zero on A [ �A: For x 2 S; we have ψ.�x/ ¤ 0 and

jψ.x/j

jψ.�x/j
D
jp.x/j

jp.�x/j
>

 
∞Y

iD1

2i=2 � 1

2i=2 C 1

!2

> exp.�9
p

2/;

where the final step uses the bound .a � 1/=.a C 1/ > exp.�2:5=a/; valid for
a >

p
2: It follows from (16.19) and the definition of p that ψ is positive on S:

Hence,

ψ.x/ > exp.�9
p

2/ jψ.�x/j; x 2 S: (16.21)

For any polynomial u of degree no greater than n; we infer from (16.20) that

X
S[�S

ψ.x/u.x/ D .�1/n
X

A[�A

fφ.x/ � φ.�x/gu.x/p.x/ D 0: (16.22)
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Since f is positive on S and negative on �S; the proof is now complete in view of
(16.21), (16.22), and Theorem 16.15.

We have reached the main result of this section, which generalizes Theo-
rem 16.17 to any subconstant approximation error and to halfspaces on the hyper-
cube.

THEOREM 16.18 (Sherstov [200]). Let F W f�1;C1gm
2

! f�1;C1g be given by

F.x/ D sgn

 
1C

mX
iD1

mX
j D1

2ixij

!
: (16.23)

Then for d < m=14;

R.F; d/ > 1 � 2��.m=d/: (16.24)

Observe that Theorem 16.18 settles the lower bounds in Theorem 16.4.

PROOF OF THEOREM 16.18. We may assume that m > 14; the claim being trivial
otherwise. Consider the function GW f�1;C1g.nC1/.6nC2/ ! f�1;C1g given by

G.x/ D sgn

 
1C

nC1X
iD1

6nC2X
j D1

2ixij

!
;

where n D b.m � 2/=6c: For every ε > RC.G; n/; Proposition 16.9 provides a
rational function A on RnC1 of degree at most n such that, on the domain of G;

ˇ̌̌̌
ˇG.x/ � A

 
: : : ;

6nC2X
j D1

xij ; : : :

!ˇ̌̌̌
ˇ < ε
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and the denominator of A is positive. Letting f be the function in Theorem 16.17,
it follows that jf .x1; : : : ; xnC1/ � A.2x1; : : : ; 2xnC1/j < ε on the domain of f;

whence

RC.G; n/ D ˝.1/: (16.25)

We now claim that either G.x/ or �G.�x/ is a subfunction of F: For ex-
ample, consider the following substitution for the variables xij for which i > nC 1

or j > 6nC 2:

xmj  .�1/j ; .1 6 j 6 m/;

xij  .�1/j C1; .nC 1 < i < m; 1 6 j 6 m/;

xij  .�1/j C1; .1 6 i 6 nC 1; j > 6nC 2/:

After this substitution, F is a function of the remaining variables xij and is equiva-
lent to G.x/ if m is even, and to�G.�x/ if m is odd. In either case, (16.25) implies
that

RC.F; n/ D ˝.1/: (16.26)

Theorem 16.8 shows that

R.F; n=2/ 6 1 �

�
1 �R.F; d/

2

�1=bn=.2d/c

for d D 1; 2; : : : ; bn=2c; which yields (16.24) in light of (15.3) and (16.26).
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16.7 Rational approximation of the majority function
The goal of this section is to determine RC.MAJn; d / for each integer d; i.e., to
determine the least error to which a degree-d multivariate rational function can ap-
proximate the majority function. As is frequently the case with symmetric Boolean
functions, the multivariate problem of analyzing RC.MAJn; d / is equivalent to a
univariate question. Specifically, given an integer d and a finite set S � R; we
define

RC.d; S/ D inf
p;q

max
t2S

ˇ̌̌̌
sgn t �

p.t/

q.t/

ˇ̌̌̌
;

where the infimum ranges over p; q 2 Pd such that q is positive on S: In other
words, we study how well a rational function of a given degree can approximate the
sign function over a finite support. We give a detailed answer to this question in the
following theorem:

THEOREM 16.19 (Sherstov [200]). Let n; d be positive integers. Abbreviate R D

RC.d; f˙1;˙2; : : : ;˙ng/: For 1 6 d 6 log n;

exp
�
��

�
1

n1=.2d/

��
6 R < exp

�
�

1

n1=d

�
:

For log n < d < n;

R D exp
�
��

�
d

log.2n=d/

��
:

For d > n;

R D 0:

Moreover, the rational approximant is constructed explicitly in each case.
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Theorem 16.19 is the main result of this section. We establish it in the next
two subsections, giving separate treatment to the cases d 6 log n and d > log n

(see Theorems 16.21 and 16.26, respectively). In the concluding subsection, we
give the promised proof that RC.d; f˙1; : : : ;˙ng/ and RC.MAJn; d / are essen-
tially equivalent.

Low-degree approximation

We start by specializing the criterion of Theorem 16.15 to the problem of approxi-
mating the sign function on the set f˙1;˙2; : : : ;˙ng:

THEOREM 16.20 (Sherstov [200]). Let d be an integer, 0 6 d 6 2n � 1: Fix a
nonempty subset S � f1; 2; : : : ; ng: Suppose that there exists a real δ 2 .0; 1/ and
a polynomial r 2 P2n�d�1 that vanishes on f�n; : : : ; ng n .S [ �S/ and obeys

.�1/tr.t/ > δjr.�t /j; t 2 S: (16.27)

Then

RC.d; S [ �S/ >
2δ

1C δ
: (16.28)

PROOF. Define f WS [�S ! f�1;C1g by f .t/ D sgn t: Define ψWS [�S ! R
by ψ.t/ D .�1/t

�
2n

nCt

�
r.t/: Then (16.27) takes on the form

ψ.t/ > δjψ.�t /j; t 2 S: (16.29)

For every polynomial u of degree at most d; we have

X
S[�S

ψ.t/u.t/ D

nX
tD�n

.�1/t

 
2n

nC t

!
r.t/u.t/ D 0 (16.30)
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by Fact 16.6. Now (16.28) follows from (16.29), (16.30), and Theorem 16.15.

Using Theorem 16.20, we will now determine the optimal error in the ap-
proximation of the majority function by rational functions of degree up to log n:

The case of higher degrees will be settled in the next subsection.

THEOREM 16.21 (Sherstov [200]). Let d be an integer, 1 6 d 6 log n: Then

exp
�
��

�
1

n1=.2d/

��
6 RC.d; f˙1;˙2; : : : ;˙ng/ < exp

�
�

1

n1=d

�
:

PROOF. The upper bound is immediate from Newman’s Theorem 16.7. For the
lower bound, put � D bn1=dc > 2 and S D f1; �; �2; : : : ; �d g: Define r 2

P2n�d�1 by

r.t/ D .�1/n

d�1Y
iD0

.t ��i
p

�/
Y

i2f�n;:::;ngn.S[�S/

.t � i/:

For j D 0; 1; 2; : : : ; d;

jr.�j /j

jr.��j /j
D

j �1Y
iD0

�j ��i
p

�

�j C�i
p

�

d�1Y
iDj

�i
p

� ��j

�i
p

�C�j
>

 
∞Y

iD1

�i=2 � 1

�i=2 C 1

!2

> exp

(
�5

∞X
iD1

1

�i=2

)
> exp

�
�

18
p

�

�
;

where we used the bound .a�1/=.aC1/ > exp.�2:5=a/; valid for a >
p

2: Since
sgn r.t/ D .�1/t for t 2 S; we conclude that

.�1/tr.t/ > exp
�
�

18
p

�

�
jr.�t /j; t 2 S:
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Since in addition r vanishes on f�n; : : : ; ng n .S [ �S/; we infer from Theo-
rem 16.20 that RC.d; S [ �S/ > expf�18=

p
�g:

High-degree approximation

In the previous subsection, we determined the least error in approximating the ma-
jority function by rational functions of degree up to log n: Our goal here is to solve
the case of higher degrees.

We start with some preparatory work. First, we need to accurately estimate
products of the form

Q
i.�

i C 1/=.�i � 1/ for all � > 1: A suitable lower bound
was already given by Newman [156, Lem. 1]:

LEMMA 16.22 (Newman [156]). For all � > 1;

nY
iD1

�i C 1

�i � 1
> exp

�
2.�n � 1/

�n.� � 1/

�
:

PROOF. Immediate from the bound .a C 1/=.a � 1/ > exp.2=a/; which is valid
for a > 1:

We will need a corresponding upper bound:

LEMMA 16.23 (Sherstov [200]). For all � > 1;

∞Y
iD1

�i C 1

�i � 1
< exp

�
4

� � 1

�
:

PROOF. Let k > 0 be an integer. By the binomial theorem, �i > .�� 1/i C 1 for
integers i > 0: As a result,

kY
iD1

�i C 1

�i � 1
6

kY
iD1

1

i

�
i C

2

� � 1

�
6

 
k C

˙
2

��1

�
k

!
:
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Also,

∞Y
iDkC1

�i C 1

�i � 1
<

∞Y
iD0

�
1C

2

.�kC1 � 1/�i

�
< exp

�
2�

.�kC1 � 1/.� � 1/

�
:

Setting k D k.�/ D
�

2
��1

˘
; we conclude that

∞Y
iD1

�i C 1

�i � 1
< exp

�
C

� � 1

�
;

where

C D sup
�>1

(
.� � 1/ ln

 
k.�/C

˙
2

��1

�
k.�/

!
C

2�

�k.�/C1 � 1

)
< 4:

We will also need the following binomial estimate.

LEMMA 16.24 (Sherstov [200]). Put p.t/ D
Qn

iD1

�
t � i � 1

2

�
: Then

max
tD1;2;:::;nC1

ˇ̌̌̌
p.�t /

p.t/

ˇ̌̌̌
6 �.16n/:

PROOF. For t D 1; 2; : : : ; nC 1; we have

jp.t/j D
.2t � 2/Š.2n � 2t C 2/Š

4n.t � 1/Š.n � t C 1/Š
; jp.�t /j D

t Š.2nC 2t C 1/Š

4n.2t C 1/Š.nC t /Š
:
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As a result,

ˇ̌̌̌
p.�t /

p.t/

ˇ̌̌̌
D

t

2t C 1
�

 
2nC 2t C 1

2t

! 
2nC 1

nC t

!
 

2t � 2

t � 1

! 
2n � 2t C 2

n � t C 1

! 6

�

�
24n

p
n

�
�

�
22n

p
n

�
�

�
22n

n

� ;

which gives the sought bound.

Our construction requires one additional ingredient.

LEMMA 16.25 (Sherstov [200]). Let n; d be integers, 1 6 d 6 n=55: Put p.t/ DQd�1
iD1 .t � d�i

p
�/; where � D .n=d/1=d : Then

min
j D1;:::;d

ˇ̌̌̌
p.bd�j c/

p.�bd�j c/

ˇ̌̌̌
> exp

�
�

4 ln 3d

ln.n=d/
�

8
p

� � 1

�
:

PROOF. Fix j D 1; 2; : : : ; d: Then for each i D 1; 2; : : : ; j � 1;

d�j
� d�i

p
� > d

�
�j �i� 1

2 � 1
�

>
1

2
.j � i/ ln

n

d
;

and thus

j �1Y
iD1

�
1 �

1

d�j � d�i
p

�

�
> exp

(
�

4

ln.n=d/

j �1X
iD1

1

j � i

)

> exp
�
�

4 ln 3d

ln.n=d/

�
: (16.31)
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For brevity, let ξ stand for the final expression in (16.31). Since 1 6 d 6 n=55;

we have bd�j c � d�j �1
p

� > 1: As a result,

ˇ̌̌̌
p.bd�j c/

p.�bd�j c/

ˇ̌̌̌
>

j �1Y
iD1

d�j � 1 � d�i
p

�

d�j C d�i
p

�

d�1Y
iDj

d�i
p

� � d�j

d�i
p

�C d�j

> ξ
j �1Y
iD1

d�j � d�i
p

�

d�j C d�i
p

�

d�1Y
iDj

d�i
p

� � d�j

d�i
p

�C d�j
by (16.31)

> ξ

 
∞Y

iD1

�i=2 � 1

�i=2 C 1

!2

> ξ exp
�
�

8
p

� � 1

�
;

where the last inequality holds by Lemma 16.23.

We have reached the main result of this subsection.

THEOREM 16.26 (Sherstov [200]). Let d be an integer, log n < d 6 n � 1: Then

RC.d; f˙1;˙2; : : : ;˙ng/ D exp
�
��

�
d

log.2n=d/

��
:

Also,

RC.n; f˙1;˙2; : : : ;˙ng/ D 0:

PROOF. The final statement in the theorem follows at once by considering the ra-
tional function fp.t/ � p.�t /g=fp.t/C p.�t /g; where p.t/ D

Qn
iD1.t C i/:

Now assume that log n < d < n=55: Let

k D

�
d

log.n=d/

�
; � D

�n

d

�1=d

:
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Define sets

S1 D f1; 2; : : : ; kg;

S2 D fbd�i
c W i D 1; 2; : : : ; dg;

S D S1 [ S2:

Consider the polynomial

r.t/ D .�1/nr1.t/r2.t/
Y

i2f�n;:::;ngn.S[�S/

.t � i/;

where

r1.t/ D

kY
iD1

�
t � i �

1

2

�
; r2.t/ D

d�1Y
iD1

.t � d�i
p

�/:

We have:

min
t2S

ˇ̌̌̌
r.t/

r.�t /

ˇ̌̌̌
> min

iD1;:::;kC1

ˇ̌̌̌
r1.i/

r1.�i/

ˇ̌̌̌
� min

iD1;:::;d

ˇ̌̌̌
r2.bd�ic/

r2.�bd�ic/

ˇ̌̌̌
> exp

�
�

Cd

log.n=d/

�

by Lemmas 16.24 and 16.25, where C > 0 is an absolute constant. Since
sgn p.t/ D .�1/t for t 2 S; we can restate this result as follows:

.�1/tr.t/ > exp
�
�

Cd

log.n=d/

�
jr.�t /j; t 2 S:
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Since r vanishes on f�n; : : : ; ng n .S [�S/ and has degree 6 2n� 1�d; we infer
from Theorem 16.20 that RC.d; S [ �S/ > exp f�Cd= log.n=d/g: This proves
the lower bound for the case log n < d < n=55:

To handle the case n=55 6 d 6 n � 1; a different argument is needed. Let

r.t/ D .�1/n t

dY
iD1

�
t � i �

1

2

� nY
iDdC2

.t2
� i2/:

By Lemma 16.24, there is an absolute constant C > 1 such that

ˇ̌̌̌
r.t/

r.�t /

ˇ̌̌̌
> C �d ; t D 1; 2; : : : ; d C 1:

Since sgn r.t/ D .�1/t for t D 1; 2; : : : ; d C 1; we conclude that

.�1/tr.t/ > C �d
jr.�t /j; t D 1; 2; : : : ; d C 1:

Since the polynomial r vanishes on f�n; : : : ; ngnf˙1;˙2; : : : ;˙.dC1/g and has
degree 2n � 1 � d; we infer from Theorem 16.20 that

RC.d; f˙1;˙2; : : : ;˙.d C 1/g/ > C �d :

This settles the lower bound for the case n=55 6 d 6 n � 1:

It remains to prove the upper bound for the case log n < d 6 n � 1: Here
we always have d > 2: Letting k D bd=2c and � D .n=k/1=k; define p 2 P2k by

p.t/ D

kY
iD1

.t C i/

kY
iD1

.t C k�i/:
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Fix any point t 2 f1; 2; : : : ; ng with p.�t / ¤ 0: Letting i� be the integer with
k�i�

< t < k�i�C1; we have:

p.t/

jp.�t /j
>

i�Y
iD0

k�i�C1 C k�i

k�i�C1 � k�i

kY
iDi�C1

k�i C k�i�

k�i � k�i�
>

kY
iD1

�i C 1

�i � 1

> exp
�

2.�k � 1/

�k.� � 1/

�
;

where the last inequality holds by Lemma 16.22. Substituting � D .n=k/1=k and
recalling that k > �.log n/; we obtain p.t/ > Ajp.�t /j for t D 1; 2; : : : ; n; where

A D exp
�

�

�
k

log.n=k/

��
:

As a result, RC.2k; f˙1;˙2; : : : ;˙ng/ 6 2A=.A2C 1/; the approximant in ques-
tion being

A2 � 1

A2 C 1
�

p.t/ � p.�t /

p.t/C p.�t /
:

Equivalence of the majority and sign functions

It remains to prove the promised equivalence of the majority and sign functions,
from the standpoint of approximating them by rational functions on the discrete
domain. We have:

THEOREM 16.27. For every integer d;

RC.MAJn; d / 6 RC.d � 2; f˙1;˙2; : : : ;˙dn=2eg/; (16.32)

RC.MAJn; d / > RC.d; f˙1;˙2; : : : ;˙bn=2cg/: (16.33)
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PROOF. We prove (16.32) first. Fix a degree-.d � 2/ approximant p.t/=q.t/ to
sgn t on S D f˙1; : : : ;˙dn=2eg; where q is positive on S: For small δ > 0; define

Aδ.t/ D �
t2p.t/ � δ
t2q.t/C δ

:

Then Aδ is a rational function of degree at most d whose denominator is positive
on S [ f0g: Finally, we have Aδ.0/ D 1 and

lim
δ!0

max
t2S
j � sgn t � Aδ.t/j D max

t2S

ˇ̌̌̌
sgn t �

p.t/

q.t/

ˇ̌̌̌
;

which yields the needed approximant for MAJn.x/; namely, Aδ.
P

xi � bn=2c/:

We now turn to the proof of the lower bound, (16.33). Fix a degree-d ap-
proximant P.x/=Q.x/ for MAJn; where Q.x/ > 0 for x 2 f0; 1gn: Let ε denote
the error of this approximant, ε 6 1: Then

.1 � ε/Q.x/ 6 P.x/ 6 .1C ε/Q.x/

whenever
P

xi 2 f0; 1; : : : ; bn=2cg; and

.1 � ε/Q.x/ 6 �P.x/ 6 .1C ε/Q.x/

whenever
P

xi 2 fbn=2c C 1; : : : ; ng: Now, Proposition 2.2 guarantees the exis-
tence of univariate polynomials p; q 2 Pd such that for all x 2 f0; 1gn; one has
p.
P

xi/ D Eσ2Sn
ŒP.σx/� and q.

P
xi/ D Eσ2Sn

ŒQ.σx/�: In view of the previous
two inequalities for P and Q; we obtain:

.1 � ε/q.t/ 6 p.t/ 6 .1C ε/q.t/; t D 0; 1; : : : ; bn=2cI

.1 � ε/q.t/ 6 �p.t/ 6 .1C ε/q.t/; t D bn=2c C 1; : : : ; n:
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Thus,

max
tD˙1;˙2;:::;˙bn=2c

ˇ̌̌̌
sgn t �

�p.t C bn=2c/

q.t C bn=2c/

ˇ̌̌̌
6 ε:

Since q is positive on f0; 1; : : : ; ng; this completes the proof of (16.33).

REMARK 16.28 (Sherstov [200]). The proof that we gave for the upper bound,
(16.32), illustrates a useful property of univariate rational approximants A.t/ D

p.t/=q.t/ on a finite set S: Specifically, given such an approximant and a point
t� … S; there exists an approximant QA with QA.t�/ D a for any prescribed value a

and QA � A everywhere on S: One such construction is

QA.t/ D
.t � t�/p.t/C aδ
.t � t�/q.t/C δ

for an arbitrarily small constant δ > 0: Note that QA has degree only 1 higher than
the degree of the original approximant, A: This phenomenon is in sharp contrast to
approximation by polynomials, which do not possess this corrective ability.

16.8 Threshold degree of the intersections of two halfspaces
In this section, we prove our main results on the sign-representation of intersections
of halfspaces and majority functions. The following elegant observation, described
informally in Section 15.1, relates sign-representation and rational approximation.

THEOREM 16.29 (Beigel et al. [33]). Let f WX ! f�1;C1g and gWY ! f�1;C1g

be given functions, where X; Y � Rn are finite sets. Let d be an integer with
RC.f; d/CRC.g; d/ < 1: Then

deg˙.f ^ g/ 6 2d:

373



PROOF. Fix rational functions p1.x/=q1.x/ and p2.y/=q2.y/ of degree at most d

such that q1 and q2 are positive on X and Y; respectively, and

max
x2X

ˇ̌̌̌
f .x/ �

p1.x/

q1.x/

ˇ̌̌̌
Cmax

y2Y

ˇ̌̌̌
g.y/ �

p2.y/

q2.y/

ˇ̌̌̌
< 1:

Then

f .x/ ^ g.y/ � sgnf1C f .x/C g.y/g � sgn
�

1C
p1.x/

q1.x/
C

p2.y/

q2.y/

�
:

Multiplying the last expression by the positive quantity q1.x/q2.y/; we obtain
f .x/ ^ g.y/ � sgnfq1.x/q2.y/C p1.x/q2.y/C p2.y/q1.x/g:

Recall that we established a converse to Theorem 16.29, namely, Theo-
rem 15.9 in the previous chapter. We are now in a position to prove the main results
of this section, stated as Theorems 16.1–16.3 above.

THEOREM 16.30 (Sherstov [200]). Let f W f�1;C1gn
2

! f�1;C1g be given by

f .x/ D sgn

 
1C

nX
iD1

nX
j D1

2ixij

!
:

Then

deg˙.f ^ f / D ˝.n/; (16.34)

deg˙.MAJn ^MAJn/ D ˝.log n/: (16.35)

PROOF. By Theorem 16.18, we have RC.f; εn/ > 1=2 for some constant ε > 0;

which settles (16.34) in view of Theorem 15.9.

Analogously, Theorems 16.19 and 16.27 show that RC.MAJn; ε log n/ >
1=2 for some constant ε > 0; which settles (16.35) in view of Theorem 15.9.
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REMARK 16.31 (Sherstov [200]). The lower bounds (16.34) and (16.35) are tight
and match the constructions due to Beigel et al. [33]. These matching upper bounds
can be proved as follows. By Theorem 16.18, we have RC.f; C n/ < 1=2 for
some constant C > 0; which shows that deg˙.f ^ f / D O.n/ by Theorem 16.29.
Analogously, Theorems 16.19 and 16.27 imply that RC.g; C log n/ < 1=2 for some
constant C > 0; which shows that deg˙.g ^ g/ D O.log n/ by Theorem 16.29.

Furthermore, Theorem 16.29 generalizes immediately to the conjunction of
k > 3 functions. In particular, the lower bounds in (16.34) and (16.35) remain
tight for intersections f ^ f ^ � � � ^ f and g ^ g ^ � � � ^ g featuring any constant
number of functions.

We give one additional result, featuring the intersection of the canonical
halfspace with a majority function.

THEOREM 16.32 (Sherstov [200]). Let f W f�1;C1gn
2

! f�1;C1g be given by

f .x/ D sgn

 
1C

nX
iD1

nX
j D1

2ixij

!
:

Let gW f0; 1gd
p

ne ! f�1;C1g be the majority function on d
p

ne bits. Then

deg˙.f ^ g / D �.
p

n/: (16.36)

PROOF. We prove the lower bound first. Let ε > 0 be a suitably small constant. By
Theorem 16.18, we have RC.f; ε

p
n/ > 1� 2�

p
n: By Theorems 16.19 and 16.27,

we have RC.g; ε
p

n/ > 2�
p

n: In view of Theorem 15.9, these two facts imply that
deg˙.f ^ g / D ˝.

p
n/:

We now turn to the upper bound. It is clear that RC.g; d
p

ne/ D 0 and
RC.f; 1/ < 1: It follows by Theorem 16.29 that deg˙.f ^ g/ D O.

p
n/:

Theorems 16.30 and 16.32 are of course also valid with respect to disjunc-
tions rather than conjunctions.
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16.9 Threshold density revisited
Recall from Section 13.3 that threshold density is another complexity measure of
sign-representations that is of interest in computational learning theory. In this sec-
tion, we will prove that the intersections of halfspaces in Theorems 16.30 and 16.32
have not only high threshold degree but also high threshold density. As a starting
point, we derive a tight lower bound for the intersection of two majority functions.

THEOREM 16.33 (Sherstov [200]). The majority function satisfies

dns.MAJn ^MAJn/ D n˝.log n/:

PROOF. The idea is to mimic the proof of Theorem 13.12, where we obtained a
somewhat weaker density bound of n˝.log n= log log n/: We will be able to strengthen
it by using our newly available lower bound of ˝.log n/ on the threshold degree of
the intersection of two majority functions.

Let t and k be integers to be fixed later. Define f W f0; 1g2t ! f�1;C1g

by f .x/ D MAJ.x1; : : : ; xt/ ^ MAJ.xtC1; : : : ; x2t/: Consider the function
f ˚W .f0; 1gk/2t ! f�1;C1g given by

f ˚.x/ D f

 
: : : ;

kM
j D1

xi;j ; : : :

!
:

Lemma 13.11 implies that

deg˙.f ˚/ D k deg˙.f /:

Consider now the function f ˚ KP; where the KP operator is as described in Sec-
tion 13.4. For bits a; b; c 2 f0; 1g, we have

.c ^ a/ _ .c ^ b/ D
1C .�1/c

2
� .�1/a

C
1 � .�1/c

2
� .�1/b:

376



As a result,

f ˚ KP.x; y; ´/ � 
kY

iD1

q1;i C � � � C

kY
iD1

qt;i > 0

!^ 
kY

iD1

qtC1;i C � � � C

kY
iD1

q2t;i > 0

!
;

where qi;j D .1C .�1/´i;j /.�1/xi;j C .1 � .�1/´i;j /.�1/yi;j :

The above construction shows that f ˚ KP is computed by the intersection of
two functions with threshold weight at most 2t4k C 1 each. Lemma 13.8 implies
that if the intersection of two majorities, each on a distinct set of 2t4kC1 variables,
has threshold density at most L; then dns.f ˚ KP/ 6 L. Theorem 13.10, on the
other hand, implies that f ˚ KP has threshold density at least 2deg˙.f ˚/ D 2k deg˙.f /.
In view of (16.35) we conclude that the intersection of two majorities, each on
2t4k C 1 variables, has threshold density expf˝.k log t /g: The theorem follows by
setting t D b

p
n=3c and k D b1

4
log nc:

Recall from Section 13.4 that density lower bound in Theorem 16.33 is tight
and matches the construction of Beigel et al. [33]. We now turn to intersections of
halfspaces with high threshold degree.

THEOREM 16.34 (Sherstov [200]). Let fnW f�1;C1gn
2

! f�1;C1g be given by

fn.x/ D sgn

 
1C

nX
iD1

nX
j D1

2ixij

!
:

Then

dns.fn ^ fn/ D expf˝.n/g; (16.37)

dns.fn ^MAJd
p

ne/ D expf˝.
p

n/g: (16.38)
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REMARK 16.35. In the proof below, it will be useful to keep in mind the follow-
ing straightforward observation. Fix functions f; gW f�1;C1gk ! f�1;C1g and
define functions f 0; g0W f�1;C1gk ! f�1;C1g by f 0.x/ D �f .�x/ and g0.y/ D

�g.�y/: Then we have f 0.x/^g0.y/ � �.f .�x/^g.�y//f .�x/g.�y/; whence
dns.f 0 ^ g0/ 6 dns.f ^ g/ dns.f / dns.g/ and thus

dns.f ^ g/ >
dns.f 0 ^ g0/

dns.f / dns.g/
: (16.39)

Similarly, we have f .x/ ^ g0.y/ � .f .x/ ^ g.�y//f .x/; whence

dns.f ^ g/ >
dns.f ^ g0/

dns.f /
: (16.40)

To summarize, (16.39) and (16.40) allow one to analyze the threshold density of
f ^ g by analyzing the threshold density of f 0 ^ g0 or f 0 ^ g instead. Such a
transition will be helpful in our case.

PROOF OF THEOREM 16.34. Put m D bn=4c: It is straightforward to verify that
the function fm

KP
W .f�1;C1gm

2

/3 ! f�1;C1g has the representation

fm
KP.x; y; ´/ D sgn

 
1C

mX
iD1

mX
j D1

2i.xij C yij C xij ´ij � yij ´ij /

!
:

As a result,

dns.f4m ^ f4m/ > dns.fm
KP
^ fm

KP/ by Lemma 13.8

D dns..fm ^ fm/KP/

> 2deg˙.fm^fm/ by Theorem 13.10

> expf˝.m/g by Theorem 16.30.
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By the same argument as in Theorem 16.18, the function f4m is a subfunction of
fn.x/ or �fn.�x/: In the former case, (16.37) is immediate from the lower bound
on dns.f4m ^ f4m/: In the latter case, (16.37) follows from the lower bound on
dns.f4m ^ f4m/ and Remark 16.35.

The proof of (16.38) is entirely analogous.

Krause and Pudlák’s method in Theorem 13.10 naturally generalizes
to linear combinations of conjunctions rather than parity functions. In other
words, if a function f W f0; 1gn ! f�1;C1g has threshold degree d and
f KP.x; y; ´/ � sgn.

PN
iD1 λiTi.x; y; ´// for some conjunctions T1; : : : ; TN of the

literals x1; y1; ´1; : : : ; xn; yn; ´n;:x1;:y1;:´1; : : : ;:xn;:yn;:´n; then N >
2˝.d/: With this remark in mind, Theorems 16.33 and 16.34 and their proofs adapt
easily to this alternate definition of density.
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Chapter 17

Conclusions and Open Problems
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17.1 Our contributions in learning theory
In Chapters 12–16, we answered several fundamental questions in computational
learning theory, ruling out efficient learning algorithms for well-studied concept
classes in the PAC model, statistical query model, and agnostic model. Our analytic
approach additionally allowed us to exhibit several new relations between learning
theory and communication complexity. A more detailed review follows.

First, we proved that a polynomial-time algorithm for PAC learning the in-
tersection of nε halfspaces on f0; 1gn with respect to arbitrary distributions would
violate standard cryptographic assumptions. More precisely, we related the prob-
lem of learning intersections of halfspaces to shortest-vector problems on lattices,
which are believed to be intractable.

Second, we obtained an unconditional, exponential lower bound on the com-
plexity of learning the intersection of nε halfspaces in Kearns’ statistical query
model. This result complements and is incomparable with our hardness result for
the PAC model: the statistical query result does not rely on any complexity-theoretic
assumptions, whereas the PAC result applies to a more powerful learning model.

These two results left open the possibility of an efficient learning algorithm
for the intersection of k halfspaces for k small, such as k D 2: We addressed
this question in the context of sign-representation by polynomials. In particular,
we proved a lower bound of ˝.

p
n/ on the threshold degree of the intersection

of two halfspaces on f0; 1gn; which is an exponential improvement on previous
work [153, 163] and solves an open problem posed by Klivans [120]. This result
exposes the limitations of polynomial-based techniques in computational learning
and points to the need for techniques that do not rely on polynomials.

Fourth, we studied the problem of learning natural concept classes in the
agnostic model, which allows adversarial corruption of the training data. Our main
conclusion was that the known techniques based on the approximate rank [101] and
low-degree polynomials [211] require exponential time to learn concept classes as
simple as decision lists and disjunctions.

Finally, our analytic approach has allowed us to exploit known relations
between learning theory and communication complexity as well as to discover new
ones. In Chapter 8, we studied the unbounded-error communication complexity
of AC0 and obtained as a corollary an exponential lower bound on the sign-rank of
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linear-size DNF formulas, improving on the previous quasipolynomial lower bound
and essentially matching the known upper bound [122]. In Chapter 10, we studied
relations among key complexity measures of a communication problem and in so
doing discovered the equivalence of product discrepancy and the statistical query
dimension. As another illustration, our proofs in Chapter 14 on agnostic learning
heavily exploit communication techniques from Part I of this thesis, most notably
the pattern matrix method.

17.2 Open problems
There are several inviting avenues for future work, both on the complexity-theoretic
front and on the algorithmic front. A starting point in our discussion is uniform-
distribution learning.

OPEN PROBLEM 1. Design a polynomial-time algorithm for PAC learning DNF
formulas of polynomial size with respect to the uniform distribution, from random
examples only.

Jackson’s Harmonic sieve [98] solves this learning problem in polynomial time but
only if query access is available to the unknown function. A counterpart to the
Harmonic sieve is Verbeurgt’s algorithm [217] that uses random examples only but
runs in worst-case time n�.log n/:

Another open problem in uniform-distribution learning concerns intersec-
tions of halfspaces. Klivans et al. [121] gave a polynomial-time algorithm for learn-
ing intersections of any constant number of halfspaces with respect to the uniform
distribution, from random examples alone. Extending this result to a superconstant
number of halfspaces on f0; 1gn would be of great interest. In fact, even a weak
learning algorithm for the problem would be of interest.

OPEN PROBLEM 2. Design a polynomial-time algorithm for learning the intersec-
tion of ω.1/ halfspaces on f0; 1gn to accuracy 1=2 � n�O.1/ with respect to the
uniform distribution.

The Fourier spectrum of the intersection of ω.1/ halfspaces on f0; 1gn is
not as well understood as that of polynomial-size DNF formulas. While the inter-
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section of O.1/ halfspaces always has a Fourier coefficient of magnitude n�O.1/ or
greater [121], the corresponding question is open for ω.1/ halfspaces.

OPEN PROBLEM 3. Prove or disprove: the intersection of k halfspaces on f0; 1gn

has a Fourier coefficient of magnitude at least n�O.1/; for some function k D k.n/

with k D ω.1/:

It is of great interest to place a nontrivial upper bound on the statistical query
dimension of polynomial-size DNF formulas and, more generally, AC0 circuits.
Apart from the significance of such results in learning theory, they would have
far-reaching consequences in communication complexity [198]. A more concrete
formulation follows.

OPEN PROBLEM 4. Prove or disprove: polynomial-size DNF formulas have statis-
tical query dimension expflogO.1/ ng under all distributions. Prove or disprove an
analogous statement for the circuit class AC0

:

Similarly, placing a nontrivial upper bound on the statistical query dimen-
sion of the intersection of a constant number of halfspaces would be a significant
step toward more efficient distribution-free learning.

OPEN PROBLEM 5. Determine the statistical query dimension of the intersection
of a constant number of halfspaces on f0; 1gn under worst-case distributions.

Analytic representations of natural concept classes also merit further study.
We would like to note two problems that seem particularly relevant to our work in
Chapter 16 and elsewhere in this thesis.

OPEN PROBLEM 6. Improve the threshold degree lower bound for the intersec-
tion of two halfspaces from ˝.

p
n/ to ˝.n/; or show that threshold degree o.n/

suffices.

OPEN PROBLEM 7. Determine the threshold degree of the circuit class AC0
:

While polynomial representations of concepts have played an important role
in learning theory, the lower bounds in Chapters 12–16 point to the limitations of
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polynomial-based learning. Developing an alternative to this paradigm is a natural
algorithmic goal for the near future.

OPEN PROBLEM 8. Develop new techniques for learning DNF formulas, intersec-
tions of halfspaces, and other natural concept classes that do not rely on represen-
tations of the concepts by polynomials.
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Appendix A

List of Symbols

For the reader’s convenience, we provide a table of all notation and technical sym-
bols used in this thesis.

Symbol Meaning Pages
Œn� the set f1; 2; : : : ; ng 23
1S ; eS the characteristic vector of S � f1; 2; : : : ; ng 23, 32
ei the characteristic vector of fig 32
jxj the Hamming weight

P
xi 24

xjS projection of x 2 f0; 1gn onto the set S � f1; 2; : : : ; ng 23
V .n; t/ system of t -subsets of f1; 2; : : : ; ng in pattern matrices 66
Pd the family of univariate polynomials of degree up to d 24
Sn the symmetric group on n elements 26
σx the string .xσ.1/; : : : ; xσ.n// 26
Of .S/ Fourier transform of a function f W f0; 1gn ! R 25

fg pointwise product of functions f; gW f0; 1gn ! R 26
χS character of the Fourier transform on Zn

2 25
E.f; d/ least error in a degree-d uniform approximation of f 27
R.f; d/ least error in a uniform approximation of f by 323

a degree-d rational function
RC.f; d/ least error in a uniform approximation of f by 323

a degree-d rational function with positive denominator
W.f; d/ degree-d threshold weight of f 28
dns.f; d/ degree-d threshold density of f 28
W.f / threshold weight of f 28
dns.f / threshold density of f 29
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Symbol Meaning Pages
degε.f / ε-approximate degree of f 32
deg˙.f / threshold degree of f 32
mon.f / monomial count of f 32
s.f / sensitivity of f 32
bs.f / block sensitivity of f 32
bs`.f / `-block sensitivity of f 32
zbs.f / zero block sensitivity of f 32
dt.f / decision tree complexity of f 33
rk A rank of a real matrix A 35
rkε A ε-approximate rank of a real matrix A 36
rk˙ A sign-rank of a real matrix A 37
tr A trace of a square real matrix A 36
σi .A/ the i th largest singular value of a real matrix A 35
hA; Bi inner product of real matrices or tensors A and B 36
A ı B Hadamard product of real matrices or tensors A and B 36
A˝ B Kronecker product of real matrices A and B 36
k � k∞ `∞ norm on real functions and matrices 24, 35
k � k1 `1 norm on real functions and matrices 24, 35
k � k Euclidean norm on vectors or spectral norm on matrices 36
k � kF Frobenius norm on matrices 35
k � k˙ trace norm on matrices 35
k � k˙;ε ε-approximate trace norm on matrices 36
vc.A/ Vapnik-Chervonenkis dimension of the sign matrix A 40
mc.A/ margin complexity of the sign matrix A 42
sq.A/ statistical query (SQ) dimension of the sign matrix A 42
D.f / deterministic communication complexity of f 48
N.f / nondeterministic communication complexity of f 48
Rε.f / ε-error randomized communication complexity of f 48
D
µ
ε .f / ε-error µ-distributional communication complexity of f 50

Qε.f / ε-error quantum communication complexity of f 98
without prior entanglement

Q�
ε .f / ε-error quantum communication complexity of f 98

with prior entanglement
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Symbol Meaning Pages
U.f / unbounded-error communication complexity of f 136
MAε.f / ε-error Merlin-Arthur communication complexity of f 196
discµ.f / discrepancy of f with respect to µ 49
disc.f / minimum discrepancy of f under any distribution 49
disc�.f / minimum discrepancy of f under a product distribution 49
Pcc sign matrices/tensors with low deterministic 57, 196

complexity
NPcc sign matrices/tensors with low nondeterministic 59, 196

complexity
coNPcc sign matrices/tensors with low co-nondeterministic 59, 196

complexity
BPPcc sign matrices/tensors with low randomized 57, 196

complexity
MAcc sign matrices/tensors with low Merlin-Arthur 196

complexity
coMAcc sign matrices/tensors with low co-Merlin-Arthur 196

complexity
PPcc sign matrices with nonnegligible discrepancy 57
UPPcc sign matrices with low sign-rank 58
PHcc polynomial hierarchy in communication 59
†cc

k
; …cc

k
kth level of the polynomial hierarchy 59

PSPACEcc polynomial space in communication 59
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